Питание растений минеральное: основные элементы и функции различных элементов для растений

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Минеральное питание растений

Питание растений заключается в поглощении ими из окружающей среды веществ, необходимых для процессов жизнедеятельности, а также распределение и использование их в обмене веществ. В процессе фотосинтеза растительные организмы синтезируют органические вещества, часть которых используют для построения самого организма, а часть используют как источник энергии. В состав органических веществ входят разные химические элементы, поступающие в растения из почвы. Большинство растений поглощают воду пассивно – силой, которая образовалась благодаря разнице между осмотическим и тургорным давлением. Растения, которые адаптировались к существованию на засоленных субстратах, используют активное транспортирование воды против градиента концентрации солей, расходую на это значительную часть продуктов ассимилляции. Из-за этого они всегда низкорослые. Минеральные вещества растения поглощают активным всасыванием. Однако растения способны не только поглощать минеральные вещества из почвенного раствора, а и растворять нерастворимые в воде соединения. Этому способствуют выделяемые растением органические кислоты – яблочная, лимонная и др.

Из-за разницы в концентрации полей почвенного раствора и цитоплазмы клеток эпиблемы возникает осмос – перемещение растворителя из почвы в волосистые клетки. Известно, что концентрации веществ в клетках корня возрастает от периферии к центру (градиент концентрации). Вследствие этого вода и растворенные в ней вещества передвигаются к сосудам центрального цилиндра корня, и возникает корневое давление, под действием которого раствор движется к стеблю. Кроме корневого давления (нижний водяной насос) движение раствора по сосудам поддерживает также процесс транспирации в листьях (верхний водяной насос). Под действием большой силы сцепления молекул воды между собой образуются своего рода столбики воды в проводящей системе растения. Начинаются такие столбики в корневых волосках, а заканчиваются – в устьицах листьев. Корневым давлением вода как бы закачивается в ксилему, а транспирация обеспечивает ее транспорт на нужную высоту.

Роль минеральных веществ в процессе жизнедеятельности растений в разные периоды вегетации определяют методом водных культур. Водная культура – это растение, выращенное без почвы в сосудах с водными растворами минеральных солей при поступлении в раствор воздуха (аэрация раствора). При этом используют разные варианты питательных сред, изменяя в них содержание компонентов и сравнивая характер вегетации растений на этих средах с вегетацией культур, для выращивания которых используют стандартный набор веществ.

Движение неорганических и органических веществ по корню. Движение воды и растворенных в ней веществ в растении происходит преимущественно двумя путями: диффузией и потоком. Диффузия воды и веществ происходит по градиенту концентраций, а движение потоком – по градиенту гидростатического давления. По сосудам вода движется, как по трубам, по общим законам гидродинамики, а в паренхимных клетках – осмотическим путем, причем передвижение воды в живых клетках значительно труднее.

В корне движение воды и растворенных в ней веществ начинается со всасывания ее корневыми волосками. Из волосков к ксилеме центрального цилиндра вода поступает через цитоплазму живых клеток коры корня, а также по клеточным стенкам. Таким путем вода передвигается медленно и на небольшое расстояние. Наконец, воды и растворенные в ней вещества поступаю в ксилему (ксилемный сок), а далее ксилемный сок по сосудам ксилемы движется благодаря корневому давлению. По ксилеме корня могут передвигаться и органические вещества, например запасные вещества корня весной.

Удобрения. С каждым урожаем из почвы выносится определенная часть минеральных веществ, и она постепенно истощается. Запас необходимых элементов пополняется минеральными (аммония сульфат, мочевина, калия хлорид, суперфосфат, фосфоритная мука; калиевая, кальциевая и натриевая селитры и др.) и органическими (перегной, торф, торфокомпосты, зеленые удобрения, птичий помет) удобрениями, которые в разной форме (порошок, раствор) используют в разные сроки в зависимости от типа почвы, ее плодородия и нужд растения. Например, азотсодержащие удобрения вносят перед посевом или в начале лета. В период формирования плодов растениями нужно больше фосфора и калия.

Количество удобрений, которые нужно внести в почву, определяют с помощью химического анализа почвы. Как избыток некоторых элементов в почве, так и их нехватка могут негативно влиять на урожайность культур. Сроки внесения удобрений определяют с учетом их способности растворятся в воде. Труднорастворимые (фосфатные) и нерастворимые (органические) удобрения вносят осенью, чтобы до весны они под действием почвенных организмов разложились до растворимых в воде минеральных соединений и с талыми водами поступили в почву. Удобрения можно вносить в отдельные фазы развития растений как подкормку. Она бывает сухой (рассыпают порошкообразные удобрения) и влажной (в почву вносят растворимые удобрения).

Испарение воды листьями (транспирация)

Вода, поступив из почвы через корневую систему в стебель и листья, передвигается по межклетникам и испаряется через устьица наружу.

Транспирация способствует поступлению нового количества воды в корень и поднятию ее по стеблю к листьям. Она является средством приспособления растений к условиям существования. Благодаря испарению в растительном организме поддерживается постоянный баланс воды в клетках. Кроме того, благодаря непосредственному движению и перемещению воды в организме растения происходят перемещения и обмен питательных веществ между отдельными органами. Наконец, этим процессом регулируется температурный режим в теле растения. Испарение воды растениями регулируется с помощью устьиц. При высоком содержании воды устьица открываются и транспирация усиливается, при недостатке воды, когда растения вянут, устьица замыкаются и транспирация затрудняется. Подача воды в листья из корней обеспечивается тремя силами: всасывающей силой клеток, силой сцепления молекул воды в проводящей системе и корневым давлением.

Интенсивность испарения зависит также от условий роста растения и его биологических свойств. Растения засушливых мест, а также в сухую погоду испаряют больше воды, чем в условиях повышенной влажности. Испарение воды, кроме устьиц, регулируется также защитными образованиями на кожице листа. Эти образования – кутикула, восковой налет, опушение разными волосками. У растений-суккулентов листок превратился на колючки (кактусы), а его функции выполняет стебель. Растения, которые растут во влажных местах, имеют большие листовые пластинки, не кожице которых нет защитных образований. Теневые растения испаряют меньше воды, чем те, которые растут без тени. Много воды испаряют растения во время суховеев и в жару, значительно меньше – в тихую пасмурную погоду.



Основную роль в испарении воды выполняют устьица, частично в этом процессе участвует и вся поверхность листа. Поэтому различают транспирацию устьичную и кутикулярную – через поверхность кутикулы, которая покрывает эпидерму листа. Кутикулярная транспирация значительно меньше устьичной.

Так как транспирация происходит преимущественно через устьица, куда проникает и углекислый газ для течения процесса фотосинтеза, существует взаимосвязь между выпариванием воды и накоплением сухого вещества в растении. Количество воды, которая испаряется растением для построения 1 г сухого вещества, называется транспирационным коэффициентом. Его величина зависит от условий роста, виды и сорта растения.

При затрудненном испарении у растений наблюдается гуттация – выделение через водяные устьица (гидатоды) капель воды. Это явление в природе наблюдается утром, когда воздух насыщен водяным паром, или перед дождем. Гидатоды – очень активная структура выделения. Однако их относят к выделительной системе только формально, так как продуктом выделения является вода, а не экскреторные вещества. Место сосредоточивания гидатод – край листа, преимущественно верхушки зубчиков, где заканчиваются проводящие элементы кислемы.

Биологическим приспособлением растений к защите от испарения является листопад – массовое опадение листьев в холодный или жаркий периоды года.

95 % сухой массы растительных тканей составляют четыре элемента - С, О, Н, N , называемые органогенами .

5 % прихо­дится на зольные вещества - минеральные элементы, содержание которых обычно определяют в тканях после сжигания органического вещества растений.

Со­держание золы зависит от вида и органа растений, условий вы­ращивания. В семенах содержание золы составляет в среднем 3 % , в корнях и стеблях – 4…5 , в листьях – 5…15 % . Меньше всего золы в мертвых клетках древесины (около 1 %). Как пра­вило, чем богаче почва и чем суше климат, тем больше в расте­ниях содержание зольных элементов.

Растения способны поглощать из окружающей среды практи­чески все элементы периодической системы Д. И. Менделеева. Причем многие элементы накаплива­ются в растениях в значительных количествах и включаются в природный круговорот веществ. Однако для нормальной жизнедеятельности самого растительного организма требуется лишь небольшая группа эле­ментов, называемых питательными .

Питательными веществами называются вещества, необходимые для жизни организма.

Элемент считается необходимым , если его отсутствие не позволяет растению завершить свой жиз­ненный цикл ; недостаток элемента вызывает специфические на­рушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредствен­но участвует в процессах превращения веществ и энергии , а не действует на растение косвенно.

Необходимость элементов можно установить только при вы­ращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллиро­ванную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготов­ления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам относятся 19 элементов: С ( 45 %), Н (6,5 %) и О 2 (42 %) (усвояемых в процессе воздушного питания) + 7 (N, P, K, S, Ca, Mg, Fe) + Mn, Cu, Zn, Mo, B, Cl, Na, Si, Co.

Все элементы, в зависимости от их содержания в растениях делят на 3 группы: макроэлементы, микроэлементы и ультромикроэлементы.

Макроэлементы содержатся в количестве от целых до десятых и сотых долей процента: N , Р, S , К, Са, Mg ; микроэлементы - от тысячных до 100-тысячных долей процента: Fe , М n , С u , Zn , В, Мо .

Со необходим бобо­вым для симбиотической фиксации N, Na по­глощается в относительно высоких количествах свеклой и необ­ходим растениям, приспособленным к засоленным почвам), Si в больших количествах встречается в соломе злаков и необходим для риса ,Cl накапливают мхи, хвощи, папоротники.

    1. Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении

Значение элемента определяется ролью, которую он выполняет самостоятельно или в составе других органических соединений. Не всегда высокое содержание свидетельствует о необходимости того или иного элемента.

Азот (около 1,5 % СМ) вхо­дит в состав белков, нуклеиновых кислот, липоидных компонен­тов мембран, фотосинтетических пигментов, витаминов и др угих жизненно важных соединений.

Основными усвояемыми формами N являются ионы нитрата (NO 3- ) и аммония (NH 4+ ) . Высшие растения способны также усваивать нитриты и водорастворимые N-содержащие органические со­единения (аминокислоты, амиды, полипептиды и др .). В ес­тественных условиях эти соединения редко бывают источником питания, поскольку их содержание в почве, как правило, очень мало.

Недостаток N тормозит рост растений. Одновременно снижается ветвле­ние корней , но соотношение массы корней и надземной системы может увеличиваться . Это приводит к уменьшению площади фотосинтетического аппарата и сокращению периода вегетатив­ного роста (раннее созревание) , что снижает фотосинтетический потенциал и продук­тивность посева .

Недостаток N а вызывает также серьезные нарушения энер­гетического обмена (хуже используют световую энер­гию, так как снижается интенсивность фотосинтеза, раньше на­ступает световое насыщение, а компенсационная точка находит­ся при более высокой интенсивности света, интенсивность дыхания может возрастать , но уменьшаются сопряженность окисления с фосфорилированием ), возрастают энергетические затраты на поддержание структуры цитоплазмы ).

N-ое голодание влияет на водный режим (снижает водоудерживающую способ­ность растительных тканей, так как уменьшает количество кол­лоидносвязанной воды, снижается возможность вне­устьичного регулирования транспирации и возрастает водоотдача ). Поэтому низкий уровень N-ого питания не только снижает урожай, но и уменьшает эффективность использования воды посевом.

Внешние признаки голодания : Бледно-зеленая, желтая окраска листьев, оранжевые, красные тона, высыхание, некрозы, низкорослость и слабое кущение, появляются признаки ксероморфизма (мелколистность) .

Фосфор (0,2-1,2 % СМ). P поглощается и функциони­рует в растении только в окисленной форме - в виде остатков ортофосфорной кислоты (PO 4 3-).

P - обязательный компонент таких важней­ших соединений, как НК, фосфопротеидов, фосфолипидов, P- ных эфиров сахаров, нуклеотидов, прини­мающих участие в энергетическом обмене (АТФ, НАД, ФАД и др.), витаминов.

P- ный обмен сводится к фосфорилированию и трансфосфорилированию. Фосфорилирование - это присоединение остатка P- ной кислоты к какому-либо органическому соединению с образова­нием эфирной связи, например фосфорилирование глюкозы, фруктозо-6-фосфата в гликолизе. Трансфосфорилирование - это процесс, при котором остаток P- ной кислоты переносится от одного органического вещества на другое. Значение образующихся при этом P- органических соедине­ний огромно.

Недостаток P вызывает серьез­ные нарушения синтетических процессов , функционирования мембран , энергетического обмена.

Внешние признаки голодания : сине-зеленая окраска с пурпурным или бронзовым оттенком (задержка синтеза белков и накопление сахаров), мелкие узкие листья, корневая система буреет , слабо развивается, корневые волоски отмирают . Приостанавливается рост растений , задерживается со­зревание плодов.

Сера (0,2-1,0 % СМ). Поступает в растение в окислен­ной форме, в виде аниона SO 4 2- . В органические соединения S входит только в восстанов­ленной форме - в составе сульфгидрильных групп (-SH) и ди­сульфидных связей (-S-S-). Восстановление сульфата происходит преимущественно в листьях . Восстановленная S может вновь переходить в окисленную функционально неактивную форму. В молодых листьях S в основном находится в составе органических соединений, а в старых накапливается в вакуолях в виде сульфата.

S является компонентом важнейших биологических соединений - коэнзима А и витаминов (тиамина, ли­поевой кислоты, биотина), играющих важную роль в дыхании и липидном обмене .

Кофермент А (S образует макроэргическую связь) поставляет ацетильный остаток (СН 3 СО- S - KoA ) в цикл Кребса или для биосинтеза жирных кис­лот, сукцинильный остаток для биосинтеза порфиринов. Липоевая кислота и тиамин входят в состав липотиаминди­фосфата (ЛТДФ), участвующего в окислительном декарбоксили­ровании ПВК и -кетоглютаровой.

Многие виды растений в малых количествах содержат летучие соединения S (сульфоксиды входят в состав фи­тонцидов лука и чеснока). Представители семейства Крестоцвет­ные синтезируют серосодержащие горчичные масла .

S принимает активное участие в многочисленных реакциях обмена веществ. Почти все белки содержат серосодержащие аминокислоты - метионин, цистеин, цистин . Функции S в белках:

    участие HS-групп и -S-S-связей в стаби­лизации трехмерной структуры белков и

    образование связей с коферментами и простетическими группами.

    Сочетание метиль­ной и HS-группы обусловливает широкое участие метионина в образовании АЦ ферментов.

    С этой аминокислоты начинается синтез всех полипептидных цепей.

Другая важнейшая функция S в растительном организме, основанная на обратимом переходе 2(-SH) = -HS-SH- ­состоит в поддержании определенного уровня окислительно­восстановительного потенциала в клетке. К серосодержащим окислительно-восстановительным системам клетки относятся система цистеин = цистин и система глу­татиона (является трипептидом - состоит из глутаминовой, цистина или цистеина и глицина). Его окислительно-восстановительные превращения связаны с переходом -S-S-групп цистина в HS-группы цис­теина.

Недостаток S тормозит белковый синтез, снижает фотосинтез и скорость роста растений , особенно надземной части.

Внешние признаки голодания : побеление, пожелтение листьев (молодых).

Калий (около 1 % СМ). В растительных тканях его гораздо боль­ше, чем других катионов. Содержание K в растениях в 100­-1000 раз превосходит его уровень во внешней среде . K поступает и в растение в виде катиона К + .

K не входит ни в одно органическое соединение . В клетках он присутствует в основном в ионной форме и легко подвижен . В наибольшем количестве K сосредоточен в молодых растущих тканях , характеризую­щихся высоким уровнем обмена веществ.

Функции :

    участие в регуляции вязкости цитоплазмы , в повышении гидратации ее коллоидов и водоудерживающей спо­собности ,

    служит основным противоионом для нейтрали­зации отрицательных зарядов неорганических и органических анионов,

    создает ионную асиммет­рию и разность электрических потенциалов на мембране, т. е. обеспечивает генерацию биотоков в растении

    является активатором многих ферментов , он необходим для включения фосфата в органические соединения, синтеза белков, полисахаридов и рибофлавина - компонента флавиновых дегидрогеназ. K особенно необходим для молодых , активно растущих органов и тканей.

    принимает активное участие в осморегуляции, (открывании и закрывании устьиц) .

    активирует транспорт углеводов в растении. Установлено, что высокий уровень сахара в зре­лых ягодах винограда коррелирует с накоплением значительных количеств K и органических кислот в соке незрелых ягод и с последующим выходом K при созревании. Под влиянием K увеличивается накопление крахмала в клубнях картофеля , сахарозы в сахарной свекле , моносахаридов в плодах и овощах , целлюлозы, гемицеллюлоз и пектиновых веществ в клеточных стенках растений.

    В результате повышается устойчивость злаков к полеганию, к грибным и бактериальным заболеваниям .

При дефиците K снижается функционирование камбия , нарушаются процессы деления и растяжения клеток , развитие сосудистых тканей , уменьшается толщина клеточной стенки, эпидермиса . В результате укорачива­ния междоузлий могут образоваться розеточные формы расте­ний . Снижается продуктивность фотосинтеза (за счет уменьшения оттока ассимилятов из листьев).

Кальций (0,2 % СМ). Поступает в растение в виде иона Са 2+ . На­капливается в старых органах и тканях. При снижении физиоло­гической активности клеток Ca из цитоплазмы перемеща­ется в вакуоль и откладывается в виде нерастворимых соедине­ний щавелевой, лимонной и др. кислот. Это значительно снижает подвижность Ca в растении.

Большое количество Ca связано с пектиновыми веществами клеточной стенки и срединной пластинки.

Роль ионов Са :

    стабилизация структуры мембран , регуляция ионных потоков и участие в биоэлектри­ческих явлениях . Са много содержится в митохондриях, хлоропластах и ядрах , а также в комплексах с био­полимерами пограничных мембран клетки.

    участие в катионообменных процессах в корне (наряду с протоном водорода принимает активное участие в пер­вичных механизмах поступления ионов в клетки корня).

    способст­вует устранению токсичности избыточных концентраций ионов NH 4+ , Al , Mn , Fe , повышает устойчивость к засолению, (ограничивает поступление других ионов),

    снижает кислотность почвы .

    участие в процессах движения цитоплазмы (структур­ная перестройка актомиозиноподобных белков), обратимых изменениях ее вязкости ,

    определяет пространственную организацию цитоплазматических ферментных систем (например, ферментов гликолиза),

    активировании ряда ферментов (дегидрогеназ, амилаз, фосфотаз, киназ, липаз) - определяет четвертичную структуру белка, участвует в создании мостиков в фермент-субстратных комплексах, влияет на состояние аллостерических центров).

    определяет структуру цитоскелета - регулируют процессы сборки-разборки микротрубочек , секреции компонентов клеточной стенки с участием везикул Гольджи.

    Комплекс белка с Ca активирует многие ферментные системы : протеинкиназы, транспортную Са-АТФ-азу, АТФ-азу актомиозина .

Регуляторное действие Са на многие стороны метаболизма связано с функционированием специфи­ческого белка - кальмодулина . Это кислый (ИЭТ 3,0-4,3) термостабильный низкомолекулярный белок. С участием кальмодулина регулирует­ся концентрация внутриклеточного Ca . Комплекс Са-каль­модулин контролирует сборку микротрубочек веретена , образова­ние цитоскелета клетки и формирование клеточной стенки.

При недостатке Ca (на кислых, засоленных почвах и торфяниках) в первую очередь страдают меристе­матические ткани и корневая система. У делящихся клеток не образуются клеточные стенки , в результате возникают много­ядерные клетки . Прекращается образование боковых корней и корневых волосков . Недостаток Ca вызывает также набуха­ние пектиновых веществ , что приводит к ослизнению клеточных стенок и загниванию растительных тканей.

Внешние признаки голодания : корни, листья, участки стебля загнивают и отмирают, кончики и края листьев вначале белеют, затем чернеют, искривляются и скручиваются.

Магний (около 0,2 % СМ). Особенно много Mg в молодых растущих частях растения, а также в генеративных органах и запасающих тканях.

Поступает в растение в виде иона Mg 2+ и, в отличие от Ca, обладает сравнительно высокой подвижностью . Легкая подвижность Mg 2+ объясняется тем, что почти 70 % этого катиона в растениях связано с анионами орга­нических и неорганических кислот .

Роль Mg :

    входит в состав хлорофилла (около 10-12 % Mg ),

    является активатором ряда ферментных систем (РДФ-карбоксилазы, фосфокиназ, АТФ-аз, енолаз, ферментов цикла Кребса, пентозофосфатного пути, спиртового и молочнокислого брожения), ДНК- и РНК-полимеразы.

    активирует процессы транспорта элек­тронов при фотофосфорилировании.

    необходим для фор­мирования рибосом и полисом, для активации аминокислот и синтеза белков.

    участ­вует в образовании определенной пространственной структуры НК.

    усиливает синтез эфирных масел, каучуков.

    предот­вращает окисление аскорбиновой кислотой (образуя комплексное соединение с ней).

Недостаток Mg приводит к наруше­нию P- ного , белкового и углеводного обменов. При магни­евом голодании нарушается формирование пластид : граны сли­паются , разрываются ламеллы стремы .

Внешние признаки голодания : листья по краям имеют желтый, оранжевый, красный цвет (мраморная окраска). Впоследствии развиваются хлороз и некроз лис­тьев. Характерным является полосатость листьев у злаков (хлороз между жилками, которые остаются зелеными).

Железо (0,08 %) . Посту­пает в растение в виде Fe 3+ .

Железо входит в состав ЭТЦ фотосинтетического и окислительного фосфорилирования (цитохромов, ферредокси­на), является компонентом ряда оксидаз (цитохромоксидазы, ка­талазы, пероксидазы). Кроме того, железо является составной частью ферментов, катализирующих синтез предшественников хлорофилла (амино­левулиновой кислоты и протопорфиринов).

Растения могут включать Fe в запасные вещества . Например, в пластидах содержится ­белок ферритин, имеющий железо(до 23 % СМ) в негеминной форме.

Роль Fe связана с его способностью к обратимым окислительно-восста­новительным превращениям (Fe 3+ - Fe 2+) и участию в транспорте электронов.

Поэтому недостаток Fe вызывает глубокий хлороз в развивающихся листьях (могут быть совершенно белыми), и тормозит важней­шие процессы энергообмена - фотосинтез и дыхание .

Кремний () содержится в основном в клеточных стенках.

Его недостаток может задержать рост злаков (кукуруза, овес, ячмень) и двудольных (огурцы, томаты, табак). Недостаток в репродуктивный период вызывает уменьшение количества семян. При недостатке Si нарушается ультраструктура клеточных органелл.

Алюминий () особенно важен для гидрофитов, его накапливают папаратники и чай.

Недостаток вызывает хлороз.

Избыток токсичен (связывает P и приводит к P- ному голоданию).

Минеральное питание растений

Для нормального жизнедеятельного цикла растительного организма необходима определённая группа питательных элементов, функции которых в растении не могут быть заменены другими химическими элементами.

Это: 1) органогены – С (45 % сухой массы); О (42%); Н (6,5 %); N (1,5 %) - в сумме 95 %;

2) макроэлементы (1 – 0,01 %): P, S, K, Ca, Mg, Fe, Al, Si, Cl, Na;

3) микроэлементы (0,01 – 0,00001 %) : Mn, Cu, Zn, Co, Mo, B, I;

4) ультрамикроэлементы (< 0,00001 %): Ag, Au, Pb, Ge….и др.

Ю. Либихом было установлено, что все перечисленные элементы равнозначны и полное исключение любого из них приводит растение к глубокому страданию и гибели, ни один из перечисленных элементов не может быть заменен другим, даже близким по химическим свойствам. Макроэлементы при концентрации 200-300 мг/л в питательном растворе еще не оказывают вредного действия на растение. Большинство микроэлементов при концентрации 0,1-0,5 мг/л угнетают рост растений.

Для нормальной жизнедеятельности растений должно быть определенное соотношение различных ионов в окружающей среде. Чистые растворы одного какого-либо катиона оказываются ядовитыми. Так, при помещении проростков пшеницы на чистые растворы KCL или CaCL 2 на корнях сначала появлялись вздутия, а затем корни отмирали. Смешанные растворы этих солей не обладали ядовитым действием. Смягчающее влияние одного катиона на действие другого катиона называют антагонизмом ионов . Антагонизм ионов проявляется как между разными ионами одной валентности, например, между ионами натрия и калия, так и между ионами разной валентности, например, калия и кальция. Одной из причин антагонизма ионов является их влияние на гидратацию белков цитоплазмы. Двухвалентные катионы (кальций, магний) дегидратируют коллоиды сильнее, чем одновалентные (натрий, калий). Следующей причиной антагонизма ионов является их конкуренция за активные центры ферментов. Так, активность некоторых ферментов дыхания ингибируется ионами натрия, но их действие снимается добавлением ионов калия. Кроме того, ионы могут конкурировать за связывание с переносчиками в процессе поглощения. Действие одного иона может и усиливать влияние другого иона. Это явление называется синергизмом . Так, под влиянием фосфора повышается положительное действие молибдена.

Физиологическое значение микро- и макроэлементов


1. Входят в состав биологически важных питательных веществ;

2. Участвуют в создании определённой ионной концентрации и стабилизации макромолекул;

3. Участвуют в каталитических реакциях, входя в состав или активируя отдельные ферменты.

Азот (N 2)

Входит в состав белков, нуклеиновых кислот, фосфолипидов мембран, порфиринов (основа хлорофилла и цитохромов), многочисленных ферментов (в т.ч. NAD и NADP) многих витаминов.

При недостатке азота в среде тормозится рост растений, ослабляется образование боковых побегов, наблюдается мелколистность и бледно-зелёная окраска листьев вследствие разрушения хлорофилла.

Несмотря на наличие в атмосферном воздухе 78 % N 2 (410 5 т), такой молекулярный азот не усваивается высшими растениями (молекула азота (NN) химически инертна; для разрыва трех ее ковалентных связей в химическом процессе синтеза аммиака требуются катализаторы, высокие температура и давление) и может переходить в доступную для них форму только благодаря деятельности микроорганизмов-азотфиксаторов. Из литосферных запасов азота (1810 15 т) в почве сосредоточена лишь его минимальная часть, из которой лишь 0,5 – 2 % прямо доступно растениям: - это NH 4 + и NO 3 - -ионы, образующиеся в результате минерализации бактериями органического азота растительных и животных остатков и гумуса. А именно, процессов:

1. Аммонификации (превращение органического азота в NH 4 +);

2. Нитрификации (окисление NH 4 + до NO 3 -);

3. Денитрификации (анаэробное восстановление NO 3 - до N 2)

Фиксация молекулярного азота ( N 2)

Химическое связывание молекулярного азота в форме NH 4 + или NO 3 - осуществляется либо в результате электрических разрядов в атмосфере, либо в присутствии катализатора при температуре более 500 0 С и атмосферном давлении около 35 МПа.

Биологическое связывание молекулярного азота атмосферы осуществляется азотфиксирующими микроорганизмами. Они бывают:

1. Свободноживущие (р. Azotobacter, Beijrinckia – аэробные и р. Clostridium – анаэробные);

2. *Симбиотические (р. Rhizobium, образующий клубеньки на корнях бобовых растений, и некоторые актиномицеты).

*Инфицирование растения хозяина симбиотическими бактериями начинается с проникновения бактерии в клетку корневого волоска, миграции в клетки коры и интенсивного деления инфицированных клеток, что приводит к образованию клубеньков на корнях. При этом сами бактерии превращаются в бактероиды , которые в 40 раз больше по размеру, чем исходная бактерия. Основная роль в процессе азотфиксации принадлежит ферменту нитрогеназе . Фермент состоит из двух компонентов: более высокомолекулярного Fe-Mo белка (Мr = 200-250 000, 2 молекулы Mo, 30 молекул Fe и 22 молекулы S) и Fe-белка (Мr = 50-70 000, 4 молекулы Fe и 4 молекулы S). Fe-Mo белок служит для связывания и восстановления молекулярного азота, а Fe-белок служит источником электронов для восстановления Fe-Mo белка, которые он получает от ферредоксина. Весь комплекс работает только в присутствии гидролиза АТР и защитного действия белка легоглобина (синтезируется клетками хозяина и защищает нитрогеназу от кислорода).

Образующийся NH 4 + , связывается с кетокислотами, образуя аминокислоты, транспортируемые в клетки растения-хозяина.

Редукция нитрата и пути ассимиляции аммиака

Так как в органические соединения включается только аммонийный азот, нитрат-ионы NO 3 - , поглощаемые корнем, должны восстанавливаться в клетках до аммиака. Осуществляется это в два этапа:

1. Восстановление нитрата до нитрита, катализируемое нитратредуктазой (в цитоплазме); NO 3 - ---2 e---- NO 2 -

2. Восстановление нитрита до аммиака, катализируемое нитритредуктазой (в хлоропластах). NO 2 - ---- 6e--- NH 4 +

Аммиак, образующийся при восстановлении нитратов или в процессе фиксации молекулярного азота, далее усваивается растениями с образованием различных аминокислот. В первую очередь акцептором NH 4 + является α-кетоглутаровая кислота, которая под действием глутаматдегидрогеназы превращается в глутамат.

Питание растений - это процесс поглощения и усвоения ими питательных веществ, необходимых для построения тканей и органов и осуществления всех жизненных функций. Питание - составная часть обмена веществ у растений.

Большинство высших растений в отличие от других организмов, например животных, строят свое тело из простых соединений - углекислого газа, воды, минеральных солей. Все необходимые элементы питания они получают из воздуха и почвы. Из воздуха через листья растения усваивают углекислый газ, который с помощью солнечной энергии преобразуют в органическое вещество своего тела. Так осуществляется фотосинтез , который называют воздушным питанием растений.

Из почвы через корни в растения поступают вода и ионы минеральных солей, т. е. происходит минеральное питание. Низшие растения: грибы, водоросли, лишайники - усваивают питательные элементы всей поверхностью тела.

Для питания растениям необходимы углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний, железо и микроэлементы, которые нужны им в небольшом количестве. Это медь, марганец, молибден, бор, цинк, кобальт и другие элементы. В составе растительных организмов обнаружены почти все химические элементы, существующие на нашей планете. Если растение не получает хотя бы один нужный элемент питания, то его основные жизненные функции резко нарушаются. Избыток других элементов не заменяет недостающих веществ. Это происходит потому, что питательные вещества выполняют в растительных тканях различные функции.

Потребности растений в элементах питания неодинаковы. Одни растения, например корнеплоды, нуждаются в повышенных дозах калия, другие - капуста, огурец - требуют много азота. У некоторых растений обнаружена потребность в натрии (сахарная свекла), кобальте (горох, соя и другие бобовые).

Как же происходит усвоение питательных веществ и их дальнейшее превращение в тело растительного организма? В процессе фотосинтеза из углекислого газа и воды, поступающей из почвы через корни, в листьях образуются первичные органические продукты - ассимиляты (сахароза и др.). Из клеток листа они поступают в ситовидные трубки флоэмы (ткани, проводящей питательные вещества от листьев к корням) и перемещаются вниз по стеблю, распространяясь затем по его тканям.

Корни растений всасывают из почвенного раствора ионы минеральных элементов, которые проникают внутрь корневых клеток. Затем минеральные вещества вместе с водой поступают в сосуды ксилемы (ткани, по которой питательные вещества движутся от корней к листьям) и по ним передвигаются в листья.

Одни элементы (калий, натрий) подаются в наземные органы в неизменном состоянии, другие - в виде органических соединений. В листьях минеральные элементы взаимодействуют с ассимилятами. Здесь образуются разнообразные органические и органо-минеральные соединения . Из них растения и строят свои ткани и органы.

Минеральное и воздушное питание растений - два звена одного физиологического процесса. Только при достаточном минеральном питании фотосинтез протекает интенсивно, и растения хорошо растут и развиваются.

Земледелец может управлять питанием растений, внося в почву минеральные и органические удобрения в нужных дозах и в оптимальные сроки, поливая растения. В защищенном грунте можно регулировать и воздушное питание, если повысить концентрацию углекислого газа в воздухе и использовать дополнительное освещение.

Очень важно уметь определять потребности сельскохозяйственных культур в том или ином элементе минерального питания, т. е. проводить диагностику питания растений.

При недостатке азота, фосфора, калия или другого элемента изменяются размер и окраска листьев, строение органов. Например, если растению не хватает азота, листья его становятся бледно-зелеными, мелкими, стебли - тонкими, у многих культур (плодовых, хлопчатника) опадают завязи.

Если недостает фосфора, то листья томата темно-зеленые с голубоватым оттенком, кукурузы - фиолетовые, капусты - красноватые. Молодые листья мелкие, по краям нижних листьев появляются участки отмершей ткани бурого или черного цвета. Развитие растений замедляется, особенно фазы цветения и созревания.

При калийном голодании листья желтеют, буреют, затем отмирают ткани по их краям, а позднее между жилками. Цвет листьев более темный с голубоватым или бронзовым оттенком. У растений укорочены междоузлия, они вянут и полегают.

Создание наилучших условий для питания растений - наиболее эффективное средство управления урожаем сельскохозяйственных культур. Это основная задача земледельца.


Следующее:

1. Изучение влияния на интенсивность физиологических процессов при их исключении из питательной среды.

2. Изучение специфической роли отдельных микроэлементов, главным образом участия их в определенных ферментных реакциях.

Второй биохимический подход оказался более результативным.

Железо было первым микроэлементом, необходимость которого была открыта Грисом в 1843 - 1844гг.

Необходимость других микроэлементов - бора, марганца, меди, цинка и молибдена, для высших растений была установлена только в 20-ых и 30-ых годах 20 столетия. Установлению их необходимости способствовало вскрытие причин многих заболеваний растений, не вызываемых грибной и бактериальной инфекцией - гниль сердечка сахарной свеклы, серая пятнистость листьев, бронзовая болезнь и др. Все эти болезни оказались результатом физиологического расстройства, вызванного недостатком того или иного микроэлемента, и болезнь ликвидировалась, как только удовлетворялась потребность растения в отсутствовавшем элементе.

Этим элементам принадлежит исключительная роль в обмене веществ. Они, соединяясь с органическими веществами, особенно белками, во много раз повышают свою каталитическую активность. Так, например, железо в составе сложного геминового комплекса в сочетании со специфическим белком повышает каталитическую активность против активности иона железа в 1010 раз.

Бор, алюминий, кобальт, марганец, цинк и медь повышают засухоустойчивость растений. И в данном случае действие микроэлементов обусловлено влиянием на коллоидно-биохимические свойства протоплазмы (повышение гидрофильности и водоудерживающей способности коллоидов). Микроэлементы усиливают также передвижение пластических веществ из листьев в генеративные органы.

Существенные сдвиги вызывают некоторые микроэлементы в скорости прохождения стадий развития. Установлено, что намачивание семян пшеницы в растворах солей Cu, Zn, Mo, B значительно ускоряет прохождение растениями стадии яровизации, тогда как растворы Fe и Mn не оказывали положительного действия или задерживали развитие.

Влияние каждого из элементов зависит от концентрации: оно сказывается на последующем росте надземных органов и корней неодинаково. Так, Cu и Mo стимулируют рост стебля и корней, тогда как Mn и Ni - только стебля, а B и Sr - только корневой.

Сильное положительное влияние оказывала обработка семян Сu на засухоустойчивость растений хлопчатника. Этот эффект обусловлен повышением водоудерживающей способности и сосущей силы клеток листовой паренхимы, изменением анатомического строения листьев в сторону ксерофитности и т.д. Аналогичный эффект наблюдали на озимой пшенице при обработке семян солями B,Cu, Mo, Co, P и К. прохождение световой стадии ускорялось под влиянием B, Co, Mo, Mn, Zn, Cu и Al. Интересно, что это наблюдалось только на длиннодневных растениях (озимая пшеница, овес) и не проявлялось на короткодневных (перилла).

В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я. В. Пейве, М. Я. Школьник, М. В. Каталымов, Б. А. Ягодин и др.

Бор

Бор - один из наиболее важных для растений микроэлементов. Его среднее содержание составляет 0,0001%, или 0,1 мг на 1 кг сухой массы. В боре наиболее нуждаются двудольные растения. Обнаружено значительное содержание бора в цветках, особенно в рыльце и столбиках. В клетке большая часть этого микроэлемента сконцентрирована в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен.

Поглощение бора сильно зависит от pH, а его распределение по растению происходит преимущественно с транспирационным током. Необходимость бора для растений установлена очень давно, но до сих пор неясно, каким образом реализуются его функции: в какие конкретно реакции он включен и каков механизм его участия в отдельных процессах.

Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Недостаток бора вызывает ряд заболеваний: гниль сердечка сахарной свеклы, внутренняя черная пятнистость столовой свеклы и брюквы, болезнь побурения головок цветной капусты, отмирание колосков у пшеницы и даже всего зачаточного колоса у ячменя, пожелтение люцерны и др. Установлено, что под влиянием бора изменяется ряд физиологических процессов: увеличивается оводненность плазмы, усиливается поглощение катионов и особенно кальция и ослабляется поглощение анионов.

Также при недостатке бора нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов, оплодотворение и плодоношение. Бор необходим растениям в течение всего периода их развития. Он не может реутилизироваться и поэтому при борном голодании прежде всего

отмирают конусы нарастания - наиболее типичный симптом борной недостаточности. Анатомические исследования указывают на прекращение деления клеток в меристеме. Одновременно обнаруживаются значительные нарушения нормального расположения элементов флоэмы и ксилемы, вплоть до полной потери этими тканями проводимости. В этом состоят причины обнаруживаемых при борном голодании нарушений передвижения пластических веществ и, прежде всего, сахаров из листьев в осевые и запасные органы растений.

Культуры, наиболее чувствительные к недостаче бора: сахарная и кормовая свекла, рапс, бобовые, люцерна, овощные, яблоня, виноград.

Магний

У высших растений среднее содержание магния составляет 0,02 %. Особенно много магния в растениях короткого дня - кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. Много его накапливается в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре. Накоплению магния в молодых тканях способствует его сравнительно высокая подвижность в растениях, что обусловливает его вторичное использование (реутилизацию) из стареющих тканей. Перемещение магния осуществляется как по ксилеме, так и по флоэме.

В хлоропласте сосредоточено 15% Mg 2+ листа, до 6% его может находиться в составе хлорофилла. При дефиците магния (голодании) доля Mg 2+ в пигменте может достигать даже 50% от общего содержания в листе. Эта функция магния уникальна: ни один другой элемент не может заменить его в хлорофилле. Магний необходим для синтеза протопорфирина 9 - непосредственного предшественника хлорофилла.

Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствии. Магний является активатором многих ферментов. Важной особенностью магния является то, что он связывает фермент с субстратом по типу хелатной связи.

Магний входит в состав фитина (органофосфата), запасного органического вещества. Отвечает за транспорт энергии, активирует фермент, который является катализатором участия СО 2 в процессе фотосинтеза.

Магний необходим для многих ферментов цикла Кребса и гликолиза. Он требуется и для работы ферментов молочнокислого и спиртового брожения.

Магний усиливает синтез эфирных масел, каучука, витаминов А и С.

При повышении степени обеспеченности магнием в растениях возрастает содержание органических и неорганических форм фосфорных соединений. Этот эффект, вероятно, связан с ролью магния в активации ферментов, участвующих в метаболизме фосфора.

Процесс поступления магния в растения может зависеть от степени обеспеченности растений другими катионами. Так, при высоком содержании калия или аммония в почве или питательном растворе уровень магния, особенно в вегетативных частях растений, снижается. В плодах же количество магния при этом не меняется или может даже возрастать. Наоборот, при низком уровне калия или аммония в питательной среде содержание магния в растении повышается. Кальций и марганец также действуют как конкуренты в процессе поглощения магния растениями.

Недостаток в магнии растения испытывают в основном не песчаных почвах. Бедны магнием и кальцием, богаты - сероземы; черноземы занимают промежуточное положение. При снижении pH почвенного раствора магний поступает в растения в меньших количествах.

Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме.

При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая "мраморная" окраска листьев наряду с хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропластов, а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев.

Признаки магниевой недостаточности вначале проявляются на старых листьях, а затем распространяются на молодые листья и органы растения. Высокая и продолжительная освещенность усиливает признаки нехватки магния.

Культуры, чувствительные к недостатку магния: сахарная свекла, картофель, хмель, виноград, орехи, парниковые культуры.

Железо

В составе соединений, содержащих гем (все цитохромы, каталаза, пероксидаза), и в негемовой форме (железосерные центры) железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении. Если для вегетирующих растений железо становится недоступным, то хлороз проявляется только на вновь развивающихся органах. Следовательно, железо прочно связывается в клетках и не способно передвигаться из старых тканей к молодым. Железо необходимо также и для бесцветных растений - грибов и бактерий, поэтому его роль не ограничивается только участием в образовании хлорофилла.

В злаковых культурах хлороз проявляется в виде чередования желтых и зеленых полос вдоль листа. В отдельных случаях дефицит железа может вызвать отмирание молодых побегов.

Дефицит железа вызывает также изменения морфологии корней, индуцируя рост корневых волосков, которые обильно покрывают поверхность корня. Это способствует лучшему контакту с почвой и почвенным раствором, увеличивая поглощение железа.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них - белок ферритин, который содержит железо в негемовой форме. На долю железа может приходиться около 23% сухой массы ферритина. В больших количествах ферритин присутствует в пластидах.

Культуры, чувствительные к недостатку железа: кукуруза, бобовые, картофель, капуста, томаты, виноград, плодовые и цитрусовые, декоративные культуры.

Марганец

Впервые на необходимость для растений марганца обратил внимание Бертран (1897). Среднее его содержание составляет 0,001% или 1 мг на 1 кг сухой массы тканей. В клетки он поступает в форме ионов Mn 2+ . Марганец накапливается в листьях. Установлено участие ионов этого металла в выделении кислорода (фоторазложение воды) и восстановлении CO 2 при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Ионы марганца активируют ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). в связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы.

Велико значение марганца для нормального протекания обмена азотистых соединений. Марганец принимает участие в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируемые рядом ферментов, из которых два (гидроксиламинредуктаза и нитритредуктаза) зависимы от марганца, в связи с чем растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания.

Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона - ауксина.

Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствии марганца хлорофилл быстро разрушается на свету.

Несмотря на значительное содержание марганца в почве, большая его часть труднодоступна для растений, особенно на почвах, имеющих нейтральное значение pH.

Марганец отвечает за окисление железа в организме растений к нетоксичным соединениям. Является необходимым компонентом синтеза витамина С. Интенсифицирует накопление сахара в корнеплодах сахарной свеклы и белка у зерновых культур. Отвечает за процесс усвоения азота. Является активатором фотосинтеза после подмерзания растений.

Симптом заболевания, вызванного недостатком марганца, служит прежде всего появление хлоротичных пятен между жилками листа. У злаков появляются удлиненные полоски хлоротичной ткани серого цвета, затем появляется узкая зона ослабленного тургора, в результате чего пластинка листа свешивается вниз. При резкой недостаточности марганца эти симптомы распространяются и на стебель. Заболевшие листья при развитии заболевания буреют и отмирают.

Болезнь серая пятнистость широко распространена на богатых гумусом почвах, имеющих щелочную реакцию. Этому заболеванию подвержены злаки, особенно овес, пшеница, рожь, кукуруза.

У растений с сетчатым жилкованием листьев при недостатке марганца появляются разбросанные по листу хлоротичные пятна, в большей степени на нижних листьях, чем на верхних.

У свеклы недостаточность марганца вызывает заболевание, известное под названием пятнистой желтухи. На листьях появляются желтые хлоротичные участки, затем края листьев закручиваются вверх.

У гороха при недостатке марганца развивается пятнистость семян. Это заболевание выражается в появлении на семенах гороха коричневых и черных пятен или даже полостей на внутренних поверхностях семядолей.

Хлороз развивается и при очень высоком содержании марганца, в этом случае марганец окисляет железо в нерастворимую окисную форму и хлороз развивается уже от недостатка железа. Избыток же железа вызывает симптомы недостаточности марганца. Наиболее благоприятные соотношения железа и марганца для лучшего роста растений и общего здорового состояния 2:1.

Культуры, чувствительные к недостатку марганца: зерновые колосовые (пшеница, ячмень, овес), кукуруза, горох, соя, картофель, сахарная свекла, вишня, цитрусовые.

Цинк

Содержание цинка в надземных частях бобовых и злаковых растений составляет 15 - 60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая - в семенах. Цинк поступает в растение в форме катиона Zn 2+ , оказывая многостороннее действие на обмен веществ. Он необходим для функционирования ряда ферментов гликолиза. Роль цинка важна также в образовании аминокислоты триптофана. Именно с этим связано влияние цинка на синтез белков, а также фитогормона индолилуксусной кислоты (ауксина), предшественником которой является триптофан. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. Цинк играет важную роль в метаболизме ДНК и РНК, в синтезе белка и клеточном делении. Является активатором ферментов, предотвращает преждевременное старение клеток. Способствует повышению жаро-, засухо - и морозостойкости растений. Цинк долгое время рассматривался как стимулятор и только к 30 гг. прошлого столетия была установлена безусловная необходимость этого элемента для всех высших растений. Болезнь недостаточности цинка широко распространена среди плодовых деревьев. При недостаточности цинка вместо нормально удлиненных побегов с хорошо развитыми листьями больные растения образуют весной розетку мелких скученных жестких листочков. У разных плодовых болезнь обозначается по-разному: мелколистность, розеточная болезнь, пятнистый хлороз, желтуха. Цинк участвует в окислительно-восстановительных процессах, он связан с превращением соединений, содержащих сульфгидрильную группу. Недостаток цинка вызывает подавление процессов углеводного обмена, так как недостаток цинка сильнее всего сказывается на растениях, богатых углеводами. Также при дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корневой системе, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы - в несколько раз возрастает содержание неорганических фосфатов, снижается содержание фосфора в составе нуклеотидов, липидов и нуклеиновых кислот. Кроме того, в 2-3 раза подавляется скорость деления клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей.

Культуры, особенно чувствительные к недостатку цинка: кукуруза, соя, фасоль, хмель, картофель, лен, овощи зеленые, виноград, яблоня и груша, цитрусовые.

Молибден

Наибольшее содержание молибдена характерно для бобовых (0,5 - 20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2,0 мг молибдена на 1 кг сухой массы. Он поступает в растения как анион MoO 4 2- , концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе сосредоточен в основном в хлоропластах.

Молибден принимает участие в восстановлении нитратов, входя в состав нитратредуктазы, а также является компонентом активного центра нитрогеназы бактероидов, фиксирующих атмосферный азот в клубеньках бобовых.

Способствует увеличению содержания хлорофилла, углеводов, каротина, аскорбиновой кислоты и белковых веществ.

Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию.

При недостатке Mo в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдается деформация листовых пластинок. Молибден, как и железо, необходим для биосинтеза легоглобина (леггемоглобина) - белка-переносчика кислорода в клубеньках бобовых. При дефиците клубеньки приобретают желтый или серый цвет, нормальная же их окраска - красная.

При недостатке молибдена резко падает содержание аскорбиновой кислоты, наблюдаются нарушения в фосфорном обмене растений.

У растений, испытывающих дефицит молибдена, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются.

Тормозится рост растений и из-за нарушения синтеза хлорофилла растения выглядят бледно-зелеными. Эти признаки похожи на признаки недостатка азота.

Культуры, чувствительные к недостатку молибдена: зерновые колосовые, бобовые, сахарная свекла, томаты, капуста, люцерна.

Другие микроэлементы

В составе разных видов растений найдено более 60 элементов, из них, кроме отмеченных выше, натрий, силиций, хлор, кобальт, медь, и алюминий рассматриваются некоторыми авторами также как необходимые.

Находящийся в растении кремний пропитывает клеточные стенки и делает их твердыми и устойчивыми против повреждения насекомыми и предохраняет клетки против проникновения грибной инфекции. Также кремний необходим для роста диатомовых водорослей.

Хлор считается стимулятором активности ферментов. Важное значение хлор имеет для зеленых фотосинтезирующих растений. Имеются сведения о влиянии хлора на азотный обмен. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Действие алюминия рассматривается как катализатора. Кроме того, при некотором избыточном накоплении в растении алюминия меняется окраска цветов. Так, например, под влиянием накопления алюминия в растении Hydrangea нормально красные или белые цветы изменяются в синие или фиолетовые.

Натрий накапливается в растениях в значительных количествах, но в жизни их существенной роли не играет, так как может быть полностью исключен из питательного раствора. Однако для галофитов, растений засоленных мест, присутствие натрия благоприятствует росту.

Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий. При дефиците кобальта подавляется синтез леггемоглобина, снижается синтез белка, и уменьшаются размеры бактероидов. Это говорит в пользу необходимости кобальта. Установлена потребность в кобальте для высших растений, не способных к азотфиксации. Показано влияние кобальта на функционирование фотосинтетического аппарата, синтез белка, его связь с ауксиновым обменом. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала.

Медь активизирует образование белков и витаминов группы В. Как и цинк, активирует фермент, предотвращает преждевременное старение клеток растения. Принимает участие в метаболизме белков и углеводов в растении. Существенно повышает иммунитет растения грибковым и бактериальным заболеваниям. Этого элемента очень мало в песчаных и торфянистых почвах. Недостаток меди проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания. Наблюдается отмирание краев молодых листьев с последующим их хлорозом и скручиванием; замедляется высвобождение пыльцовых зерен, вследствие чего снижается опыление растений. Наблюдается существенное снижение урожайности культуры (если отсутствуют визуальные признаки дефицита микроэлемента); у злаковых культур может наблюдаться полегание; у плодовых культур может наблюдаться поникание ветвей и кроны.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии Как приготовить творожный десерт с желатином Как приготовить творожный десерт с желатином