Питательные вещества для растений. Питание растений. По составу микроудобрения бывают

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Главными элементами питания растений являются углерод, кислород, водород, азот, фосфор, калий, сера, кальций, железо. Однако в растениях могут быть обнаружены и другие химические элементы, встречающиеся в почве по месту их произрастания, - марганец, бор, медь, цинк, молибден, кобальт и т. д.

Питательные вещества в растения поступают через корневую систему из почвы и через листья. Воздух содержит такие важные элементы питания и жизнедеятельности растений, как кислород, углерод и азот.

В процессе одной реакции поглощается 477 кал/моль. Формулой (СН 20) обозначена элементарная единица молекулы углевода, которая служит исходным материалом для сложных углеводов, белков, жиров и других соединений. У высших растений имеются разные биохимические пути фиксации и преобразования двуокиси углерода. У большинства растений фиксация СО 2 идет только по циклу С 3 (пентозофосфатный восстановительный цикл), их называют С 3 -растения, у других - по циклу С 3 и циклу С 4 (циклу дикарбоновых кислот) - С 4 -растения. К последним относятся кукуруза, просо, сорго, сахарный тростник и др. Существует еще и третий путь фиксации СО 2 .

С4-растения иначе, чем С 3 -растения, реагируют на освещенность, тепло- и влагообеспеченность. При повышении степени освещенности и температуры у них возрастает интенсивность фотосинтеза в расчете на единицу поверхности листа. Кроме того, они более эффективно используют воду. Как правило, транспирационный коэффициент у них менее 400, тогда как у С 3 -растений он от 400 до 1000. Максимальная интенсивность фотосинтеза у растений с С 3 -пентозофосфатным циклом фиксации диоксида углерода обычно наблюдается при умеренной освещенности за С 3 — и С 4 -растений в зависимости от освещенности и температуры и яркий свет снижают интенсивность фотосинтеза.

Углерод в виде углекислоты воздуха составляет основу . Незначительное содержание СО 2 в атмосферном воздухе (всего 0,03%) является одной из причин развития растениями огромной листовой поверхности для его улавливания. Нижним пределом содержания СО 2 в воздухе для растений является концентрация 0,008% (~0,01%). Высокие концентрации СО 2 положительно влияют на фотосинтез только при достаточно хорошем освещении и обеспеченности растений другими факторами жизни. Повышение концентрации двуокиси углерода в приземном слое воздуха до 1% благоприятно для многих культур и способствует усилению процесса фотосинтеза. Этому способствует внесение в почву органических удобрений, растительных остатков, которые при разложении выделяют углекислоту. В условиях защищенного грунта, в теплицах, во многих случаях искусственно поддерживают повышенную концентрацию СО 2 (порядка 1-2%), что способствует увеличению урожайности возделываемых культур.

В почве двуокись углерода находится в различных формах и соединениях: в поглощенном и растворенном состояниях, в составе карбонатов и бикарбонатов и т. д., а также в составе почвенного воздуха как результат жизнедеятельности микроорганизмов, растений и других живых организмов. Его содержание в почвенном воздухе может достигать 10% и более.

Кислород в жизни растений и в почве имеет важное значение. Он потребляется растениями при дыхании, используется микроорганизмами почвы и активно участвует в различных химических реакциях окисления-восстановления. Содержание кислорода в почвенном воздухе по сравнению с атмосферным, где оно составляет 20,81%, может снижаться до 2-3%. Большой недостаток кислорода в почвенном воздухе влечет за собой угнетение или гибель растений. Одним из агротехнических приемов по его увеличению является улучшение аэрации почвы, усиление газообмена в почве путем ее обработки.

Азот является одним из важнейших элементов питания растений. Он входит в состав молекул белков, протеина, аминокислот и многих других органических азотсодержащих соединений. В атмосферном воздухе содержится 78,23% азота, однако он недоступен растениям. Фиксация атмосферного азота в различные азотсодержащие органические вещества осуществляется благодаря деятельности двух групп бактерий: свободноживущих, обитающих в ризосфере, и симбиотических, развивающихся на корнях некоторых растений, преимущественно бобовых. При минерализации этих веществ образуются растворимые формы нитратов, нитритов и аммиака, которые усваиваются корнями растений. Около 20% потребности растений в азоте покрывается именно за счет его перевода из воздуха в доступные формы. Остальное количество растения получают из природных запасов почвы и за счет внесения удобрений. Преобладающая часть этих запасов и часть азота, вносимая с удобрениями, находятся в форме трудно — или недоступных соединений. Регулировать содержание доступных форм азота в почве можно, создавая благоприятные почвенные условия для развития свободноживущих (азотобактера и др.) и симбиотических (клубеньковых) бактерий - хорошую аэрацию, слабокислую и нейтральную реакции почвенного раствора, оптимальные температурные условия, а также внесением в почву азотобактерина. Для тех бобовых культур, которые возделываются на данном поле впервые, в почву вносят препараты, содержащие чистую культуру клубеньковых бактерий соответствующей расы (нитрагин).

Регулирование процесса превращения азота из одних форм в другие заключается не только в ускорении разложения органического вещества почвы, растительных остатков, навоза и удобрений. Нередко в определенный отрезок времени возникает необходимость перевода азотных соединений из подвижных растворимых форм в недоступные формы органического вещества. Такая необходимость возникает на легких песчаных и супесчаных почвах, где процесс нитрификации происходит интенсивно не только летом, но и осенью, после уборки сельскохозяйственных культур. Образовавшиеся в это время нитраты остаются неиспользованными и могут с нисходящим потоком воды вымываться из корнеобитаемого слоя почвы. Чтобы использовать этот азот, после уборки одной культуры высевают другую либо для получения продукции, либо для запашки (зеленое удобрение). В этом случае аммиачный и нитратный азот используется растениями для образования органического вещества и частично (при уборке второго урожая) или полностью (при запашке) остается в почве и может быть использован растениями в следующем году.

Фосфор, калий, магний и другие элементы минерального питания растений имеют строго определенное значение в реакциях, протекающих в растениях. Фосфор входит в состав нуклеопротеидов, аденозинфосфатов и других фосфатов, обладающих пирофосфатными связями с большим запасом свободной энергии гидролиза. Он оказывает большое влияние на скорость роста и развитие растений. Калий увеличивает водоудерживающую способность и проницаемость протоплазмы, положительно влияет на синтез хлорофилла, белков, крахмала, жиров, усиливает обмен веществ в растениях. Магний входит в состав хлорофилла, служит катализатором при образовании дифосфорных эфиров, Сахаров и других соединений. Такие важнейшие аминокислоты, как цистин, цистеин, метионин, содержат серу, которая участвует в различных окислительно-восстановительных реакциях. Кальций играет важную роль в передвижении углеводов, оказывает влияние на превращение азотистых веществ, ускоряет распад запасных белков семян при прорастании.

Потребность растений в элементах минерального питания к формам их доступности в почве различна и зависит от вида, сорта растений и является предметом изучения агрохимии. Так, оптимальное отношение основных элементов питания азота, калия и фосфора для зерновых равно 1:1:0,5, а для сахарной свеклы - 1: 1,7:4,3.

Все приемы регулирования питательного режима сельскохозяйственных культур в земледелии можно разделить на 4 группы: пополнение в почве питательных элементов; создание условий для перевода элементов питания из труднодоступных и недоступных форм в усвояемые растениями; создание условий для лучшего усвоения растениями этих элементов; мероприятия по предотвращению потерь питательных веществ из почвы.

Пополнение почвы питательными веществами осуществляется главным образом путем внесения удобрений. Виды удобрений, сроки, способы и дозы их внесения под различные культуры, а также взаимодействие их с почвой также изучаются агрохимией, а реализация всех этих разработок осуществляется в земледелии при возделывании культур.

Путем чередования на полях возделываемых культур, характеризующихся различной корневой системой, растения могут усваивать питательные элементы из разных горизонтов, слоев и перераспределять их по этим слоям. Так, при возделывании растений с глубокой корневой системой используются питательные вещества из глубоких слоев почвы, а в верхних слоях питательные вещества остаются и могут быть использованы при последующем возделывании других культур.

Некоторые растения, например донник, горох, люпин, гречиха и др., обладают способностью использовать труднодоступные для других растений соединения фосфора. При разложении растительных остатков этих культур фосфор переходит в доступные формы и может быть использован растениями других видов. Создание условий для превращения питательных веществ из одних форм в другие осуществляется путем обработки почвы, при этом создаются лучшие условия для ее аэрации, что способствует усилению микробиологической деятельности, минерализации органических веществ. Поскольку гумус, растительные остатки и органические удобрения содержат азот, фосфор, калий и другие макро- и микроэлементы, то эти вещества переходят из органической формы в органо-минеральные и минеральные растворимые соединения и, таким образом, могут быть использованы растениями. Многие виды микроорганизмов способствуют использованию труднорастворимых соединений фосфора, растворяя их в различных кислотах, образующихся при разложении органического вещества. Большое значение имеет проведение мероприятий по созданию оптимальных для растений физических свойств почв, реакции почвенного раствора, улучшению водного режима почв.

Имеющиеся в почве питательные вещества могут различными путями теряться и, следовательно, не использоваться растениями. Такие потери связаны с проявлением эрозионных процессов, с вымыванием поверхностными и внутрипочвенными стоками растворимых форм питательных элементов, выносом с полей при уборке урожая (с почвой, приставшей к корнеплодам и клубнеплодам). В результате минерализации органического вещества и процессов денитрификации азот переходит в газообразное состояние и, таким образом, теряется. Особенно велики такие потери азота на полях, не покрытых в вегетационный период растительностью. Следовательно, все приемы по сохранению влаги в почве, по борьбе с эрозией почв выполняют и задачу по снижению потерь питательных элементов. Процесс денитрификации интенсивнее протекает на почвах с избыточным увлажнением и плохой аэрацией при нейтральной реакции почвенного раствора. Поэтому повышение аэрации и усиление окислительных процессов в почве, полное использование нитратного и аммиачного азота культурными растениями в течение вегетационного периода уменьшают потери азота.

Расчеты показывают, что с полей ежегодно вывозится более 10,8 млн мелкозема с картофелем и клубнеплодами, и они, видимо, занижены (Белоцерковский, 1987). В 1985 г. в Московской обл. вместе со свеклой было вынесено 8,8% почвы от всей массы (при урожайности свеклы 422 ц/га это составляло 3,7 т/га).

Питание растений - это процесс поглощения и усвоения ими питательных веществ, необходимых для построения тканей и органов и осуществления всех жизненных функций. Питание - составная часть обмена веществ у растений.

Большинство высших растений в отличие от других организмов, например животных, строят свое тело из простых соединений - углекислого газа, воды, минеральных солей. Все необходимые элементы питания они получают из воздуха и почвы. Из воздуха через листья растения усваивают углекислый газ, который с помощью солнечной энергии преобразуют в органическое вещество своего тела. Так осуществляется фотосинтез , который называют воздушным питанием растений.

Из почвы через корни в растения поступают вода и ионы минеральных солей, т. е. происходит минеральное питание. Низшие растения: грибы, водоросли, лишайники - усваивают питательные элементы всей поверхностью тела.

Для питания растениям необходимы углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний, железо и микроэлементы, которые нужны им в небольшом количестве. Это медь, марганец, молибден, бор, цинк, кобальт и другие элементы. В составе растительных организмов обнаружены почти все химические элементы, существующие на нашей планете. Если растение не получает хотя бы один нужный элемент питания, то его основные жизненные функции резко нарушаются. Избыток других элементов не заменяет недостающих веществ. Это происходит потому, что питательные вещества выполняют в растительных тканях различные функции.

Потребности растений в элементах питания неодинаковы. Одни растения, например корнеплоды, нуждаются в повышенных дозах калия, другие - капуста, огурец - требуют много азота. У некоторых растений обнаружена потребность в натрии (сахарная свекла), кобальте (горох, соя и другие бобовые).

Как же происходит усвоение питательных веществ и их дальнейшее превращение в тело растительного организма? В процессе фотосинтеза из углекислого газа и воды, поступающей из почвы через корни, в листьях образуются первичные органические продукты - ассимиляты (сахароза и др.). Из клеток листа они поступают в ситовидные трубки флоэмы (ткани, проводящей питательные вещества от листьев к корням) и перемещаются вниз по стеблю, распространяясь затем по его тканям.

Корни растений всасывают из почвенного раствора ионы минеральных элементов, которые проникают внутрь корневых клеток. Затем минеральные вещества вместе с водой поступают в сосуды ксилемы (ткани, по которой питательные вещества движутся от корней к листьям) и по ним передвигаются в листья.

Одни элементы (калий, натрий) подаются в наземные органы в неизменном состоянии, другие - в виде органических соединений. В листьях минеральные элементы взаимодействуют с ассимилятами. Здесь образуются разнообразные органические и органо-минеральные соединения . Из них растения и строят свои ткани и органы.

Минеральное и воздушное питание растений - два звена одного физиологического процесса. Только при достаточном минеральном питании фотосинтез протекает интенсивно, и растения хорошо растут и развиваются.

Земледелец может управлять питанием растений, внося в почву минеральные и органические удобрения в нужных дозах и в оптимальные сроки, поливая растения. В защищенном грунте можно регулировать и воздушное питание, если повысить концентрацию углекислого газа в воздухе и использовать дополнительное освещение.

Очень важно уметь определять потребности сельскохозяйственных культур в том или ином элементе минерального питания, т. е. проводить диагностику питания растений.

При недостатке азота, фосфора, калия или другого элемента изменяются размер и окраска листьев, строение органов. Например, если растению не хватает азота, листья его становятся бледно-зелеными, мелкими, стебли - тонкими, у многих культур (плодовых, хлопчатника) опадают завязи.

Если недостает фосфора, то листья томата темно-зеленые с голубоватым оттенком, кукурузы - фиолетовые, капусты - красноватые. Молодые листья мелкие, по краям нижних листьев появляются участки отмершей ткани бурого или черного цвета. Развитие растений замедляется, особенно фазы цветения и созревания.

При калийном голодании листья желтеют, буреют, затем отмирают ткани по их краям, а позднее между жилками. Цвет листьев более темный с голубоватым или бронзовым оттенком. У растений укорочены междоузлия, они вянут и полегают.

Создание наилучших условий для питания растений - наиболее эффективное средство управления урожаем сельскохозяйственных культур. Это основная задача земледельца.


Следующее:
Эффективность удобрений. Часто виноградари задаются вопросом: почему ягоды мелкие, кислые, слабо окрашены? Почему запаздывает созревание ягод, лоза плохо вызревает? Ответ на этот вопрос находится в сбалансированном питании, наличии воды, солнечного света и тепла. Без воды, углерода, азота и магния не будет процесса образования хлорофилла, а следовательно, и роста растения. Без углерода, водорода и кислорода не будет моносахаридов. Без азота, углерода, водорода, кислорода и минеральных элементов моносахариды не превращаются в полисахариды, аминокислоты, белки, ароматические и красящие вещества. Ниже пойдёт речь о путях достижения максимального эффекта в виноградарстве.

Главной задачей получения высоких урожаев винограда, является обеспечение кустов одновременно и в нужных количествах элементами питания, водой, солнечным светом, теплом и воздухом.

Говоря о пользе минеральных удобрений, необходимо помнить о том, что они эффективны только в нужном количестве и соотношении. Внёс в почву удобрения в количестве меньше нужного – кустам почти ничего не достанется, т.к. часть их свяжет почва, съедят микроорганизмы, унесёт вода. Дал удобрений больше нормы – можно навредить почве, ухудшить качество урожая. Вред минеральных удобрений в какой-то мере проявляется в том, что они вносятся в почву в солевой, а не в хелатной форме. Хелаты (в переводе с греческого – клешня) – это такие растворы которые, как клешнёй, удерживают ионы металлов в изолированном виде. Попав на лист, хелаты переносят ион металла в ткани и только там его освобождают. Таким образом, металлы хелатами доставляются в усвояемой форме в нужное место и полностью усваиваются растениями без потерь. А соли удобрений, попадая в органы куста, не могут быть усвоены растением в таком виде и накапливаются в нём. К ним также относятся нитраты NO 4 и аммиак NH 3 .

Усвоение растениями элементов питания. Минеральные элементы усваиваются растениями только в растворённом виде, а растворяются они в почве под действием кислот, образующихся под действием микроорганизмов.

Почва состоит из минеральной и органической (гумуса) частей. Гумус – это перегной, образовавшийся в результате отмирания растительных остатков и животных организмов, а также разложения продуктов жизнедеятельности живых организмов. Смешанный с измельчённой породой, гумус образовал почву. Таким образом, почва состоит из минеральной (90-99% от всей массы почвы) и органической части (Иванцов Д.В. « Как восстановить плодородие почвы», Новосибирск, «ПО Сияние», 2003г.). Органическая часть - гумус является источником питательных веществ для растений. Органические вещества растениями не усваиваются, они их усваивают только после их минерализации, т.е. после преобразования органических веществ в неорганические – минеральные. Минерализация органического вещества в доступные для растений формы происходит в результате жизнедеятельности населяющих почву микроорганизмов. При этом выделяется углекислый газ СО 2 , который из почвы уходит в атмосферу, обогащая углеродом её приземную часть, и ассимилируется растениями в процессе фотосинтеза. Часть углекислого газа при соединении с водой в почве образует угольную кислоту Н 3 СО 4 , которая является растворителем минеральных удобрений, а последние, потребляются растениями только в растворённом виде.

Углекислый газ через устьица поступает из воздуха в листья. В процессе фотосинтеза углекислый газ расщепляется на углерод и кислород. Кислород выделяется листьями в воздух, обогащая атмосферу. Без углекислого газа в листьях не синтезируется сахар, а без кислорода в почве задыхаются корни.

Растения для питания используют 19 химических элементов. Из выше упомянутого источника известно, что зелёная масса растений в общем понимании состоит из воды – около 90%, углерода – 5%, кислорода – 2%, азота – 1,5%, водорода – 0,8% и различных минеральных элементов в общем объёме – 0,7%. Из минеральных веществ растениям необходимы фосфор, калий, магний, кальций, натрий, сера, железо, медь, бор, цинк, марганец, молибден, кобальт и йод.

Нагляднее картина выглядит при пересчёте на сухое вещество. В сухом веществе растений содержится углерода – 50%, кислорода – 20%, азота – 15%, водорода – 8% и минеральных веществ – 7%. Таким образом, основную массу элементов питания растения берут из атмосферного воздуха, а это углерод и кислород в виде углекислого газа, что составляет 70% от всего объёма сухого вещества. Больше всего в растении углерода. Его требуется в 7 раз больше, нежели всех остальных макро- и микроэлементов вместе взятых. В атмосфере также содержатся азот и водород, но растения их в молекулярной форме не усваивают, а это означает, что азот и водород в растения из воздуха не поступает. Их они усваивают из почвы. Поэтому почва должна быть богатой азотом, т.к. из всех элементов, усваиваемых растениями из почвы, азот составляет наибольший объём. Недостающие вещества – азот, водород и минеральные элементы растения берут из почвы вместе с водой в растворённом виде. Из почвы также поступают и остальные минеральные вещества. Минеральные вещества, усваиваемые растениями, находятся в ионном виде. Металлы в растворах присутствуют в виде положительно заряжённых ионов: K + , Mg + , Na + , Ca 2+ и иона аммония NH 4 + , а также др. Ионы неметаллов и кислотных остатков находятся в виде отрицательно заряженных ионов: SO 4 2- , Cl - , CO 3 2- , PO 4 3- и нитрат ион N О 3 - .

В почве всегда содержатся питательные вещества. Однако, какой бы ни была богатой питательными веществами почва, рано или поздно она начинает истощаться, вследствие выноса их урожаем. Питательные вещества из почвы выносятся вместе с урожаем и в почву не возвращаются. В результате нарушения кругооборота питательных веществ на виноградниках и садовых участках, почва истощается. Не восполнение питательных веществ в почве приводит к ослаблению растений и снижению урожайности.

Для восполнения питательных веществ необходимо вносить в почву минеральные удобрения. Но минеральные удобрения не содержат углерод. Он содержится в небольших количествах только в мочевине. Углерод также в небольших количествах содержится в золе. Поэтому внесение в почву только минеральных элементов не влияет на образование в почве углекислого газа и кислорода, преобладающих в общем объёме питательных веществ растений.

Кислород должен поступать в почву, т.к. он необходим корням. В листьях кислород образуется при разложении углекислого газа и воды. Из почвенного воздуха корни винограда потребляют кислород. При уплотнении почвы затрудняется поступление атмосферного воздуха по почвенным каналам. При плотности почвы выше 1,4т/м 3 , из-за снижения количества воздуха в ней, виноградные кусты развиваются слабо и дают низкие урожаи, а при 1,7т/м 3 виноград не растёт.

Для растворения минеральных удобрений в почве должна быть угольная кислота, а для её образования в почве должен присутствовать углекислый газ. Но углекислый газ в почве образуется в результате разложения органического вещества. Внесённые без органики минеральные удобрения окажутся без углекислого газа в почве, т.е. без угольной кислоты и не смогут раствориться до ионов для усвоения растениями. Следовательно, для усвоения растениями минеральных удобрений необходимо периодически вносить в почву и органику. Повысить в почве содержание органических веществ, богатых азотом и углеродом, можно внесением в почву навоза, компоста, растительных остатков. Соотношение углерода и азота в различных органических материалах указано в таблице 2.

Таблица 2. Соотношение углерода к азоту в органических материалах (по Иванцову Д.В. 2003г).

п.п. Органические материалы Соотношение C:N

Навозный компост, перегной

10: 1

Навоз свежий

20-30: 1

Газонная трава

12-20: 1

Овощные отходы, ботва

13: 1

Зелёная масса бобовых растений

5-25: 1

Смешанные садовые отходы

20: 1

Смешанные кухонные отходы

23: 1

Листва

40-50: 1

Солома

50-125: 1

Опилки древесные

500: 1

Углерод и азот. Виноградари и садоводы замечали, что при внесении в почву измельчённой виноградной лозы или некомпостированных древесных опилок наблюдается ослабление роста растений. Это происходит по следующей причине. При внесении или мульчировании почвы органикой с высоким содержанием углерода, происходит связывание почвенного азота микроорганизмами, т.к. в таких условиях микроорганизмы резко размножаются и потребляют азот для питания, а это приводит к дефициту азота для растений в почве. Особенно это наглядно проявляется при использовании для разрыхления почвы древесных опилок, стружки, сухой листвы, соломы, коры и растительной шелухи. При внесении в почву органики необходимо обеспечивать соотношение углерода к азоту в почве. Оптимальным соотношением углерода к азоту (С: N ) является 30: 1, что достигается различными добавками. Более старые, одревесневшие материалы считаются богатыми углеродом, а в свежих частях зелёных растений преобладает азот. Поэтому грубые органические отходы, древесную стружку и опилки, богатые углеродом, в качестве мульчи или рыхлителя в чистом виде можно применять в ограниченных количествах только осенью. При компостировании стружки и опилок их необходимо предварительно полить раствором аммиачной селитры или мочевины, для обогащения азотом и ускорения процессов разложения.

Вода. Основной составляющей вегетирующих растений, как было отмечено выше, является вода. С помощью воды растения всасывают из почвы питательные элементы. Чем больше дефицит воды, тем хуже развиваются растения. Без воды не происходит фотосинтез, т.к. при недостатке воды листья растений закрывают устьица, чтобы предотвратить испарение влаги. А это приводит к прекращению потребления углекислого газа листьями из воздуха. К тому же, из-за прекращения испарения листьями влаги снижается отвод тепла, листья в жару слабо охлаждаются, перегреваются и возникает ожог листьев. Это приводит к заболеванию кустов винограда апоплексией – внезапному подсыханию кромки листьев винограда. Такое явление чаще всего наблюдается в засуху в конце июля – августе в жаркую сухую погоду. Особенно апоплексия проявилась в 2005г. Чем меньше воды, тем слабее синтезируются органические вещества, тем хуже развиваются растения.

Естественное восполнение азота в почве. Что же касается естественного восполнения питательных элементов в почве, то картина выглядит следующим образом. Во время атмосферных осадков в виде грозовых дождей в атмосфере, вследствие грозовых разрядов атмосферный молекулярный азот окисляется сначала до окиси азота NO и далее до двуокиси азота NO 2. В присутствии кислорода и воды (дождя) двуокись азота образует азотную кислоту HNO 3, которая с водой попадает в почву. Таким образом, с атмосферными осадками на 1м 2 почвы за год попадает 0,25-0,4г связанного азота. Еще за счет деятельности азотфиксирующих микроорганизмов в почве образовывается от 0,5 до 1,5г/м 2 связанного азота. При выращивании в междурядьях зернобобовых, люцерны и клевера азотфиксирующие бактерии могут восполнить фиксированного азота в почве от 10 до 20г/м 2 (Ю.Н.Кукушкин «Химия вокруг нас» М. «Высшая школа», 1992г). Конечно же, при такой раскладке дефицит азота в почве, создаваемый выносом урожая и срезанной лозой (6,5г/кг), на винограднике не может быть восполнен. Его необходимо дополнительно вносить с минеральными удобрениями и органикой.

Усвоение азота растениями. Растения усваивают из почвы азот, связанный в виде ионов NH 4 + и NO 3 - . Азотные удобрения подразделяются на аммиачные – аммиак NH 3, сернокислый аммоний (NH 4) 2 SO 4 ; нитратные – селитры аммиачная NH 4 NO 3 , натриевая NaNO 3 , калиевая KNO 3 , и кальциевая Ca (NO 3) 2 ; амидные - мочевина NH 2 CONH 2 . Аммиачные удобрения в почве разлагаются на ионы аммония NH 4 + , которые в свою очередь, как и аммиак, превращаются в нитраты в виде ионов NO 4 + и NO 3 - . Нитраты легко вымываются из почвы водой. Около 13% нитратного азота уходит в подземные воды с нисходящим током воды. Нитраты в виде ионов NO 4 + и NO 3 - легко усваиваются растениями, Они, попадая в листья с почвенным раствором, в процессе фотосинтеза расщепляются до свободных атомов с последующим синтезом органических (пластических) веществ.

В аммиачной селитре половина азота содержится в аммиачной форме, которая практически из почвы не вымывается и усваивается растениями медленно. Вторая половина азота содержится в нитратной форме. Нитраты почвой не связываются, и поэтому легко вымываются из почвы водой. Аммиачная селитра – в нитратной её части является быстродействующим азотным удобрением, а аммиачная её часть действует медленно, т.е. продолжительное время.

Мочевина, при внесении в почву, разлагается в растворённом виде постепенно, превращаясь в аммиак и углекислый газ. Так как она разлагается постепенно, то и аммиак поступает в растения тоже длительное время. Мочевина является долгодействующим (пролонгированным) азотным удобрением.

Азот входит в состав аминокислот, из которых образуются белки. Он также содержится в хлорофилле растений.

Фосфор и калий. С наибольшей скоростью почва истощается азотом, фосфором и калием. Калий частично возвращается в почву при условии компостирования и внесении в почву листьев и ботвы, но всё же это не восполняет его выноса с урожаем.

Что же касается фосфора, то его необходимо только восполнять в почве путём дополнительного внесения фосфорных удобрений. В воздухе фосфор не содержится, а в почве его очень мало. К тому же, фосфор в почве содержится, в основном, в виде нерастворимых солей – фосфатов кальция, особенно в карбонатных почвах. Так как при большом содержании в почве карбонатов и соединений железа и алюминия в виде ионов последние образуют с фосфатными ионами РО 4 3- слаборастворимые соли – фосфаты типа Са(РО 4) 2 . По этой причине не следует смешивать растворы фосфорных удобрений с растворами железного или медного купороса, а также со щелочными растворами, т.е. с бордоской жидкостью.

Таким образом, в результате выноса с урожаем азота, фосфора и калия, они в почве практически не восполняются, что со временем приводит к истощению почвы.

Магний. Большая роль в жизни растений отводится магнию. Магний является основой молекулы хлорофилла. Так как атом магния находится в самом центре молекулы хлорофилла, и связан в окружении с четырьмя атомами азота, то из этого видно, что недостаток магния ослабляет процесс образования хлорофилла в листьях, что проявляется в появлении хлороза листьев.

При недостатке азота лист также теряет интенсивность зелёной окраски, что ослабляет процесс образования хлорофилла. Зелёный пигмент растений хлорофилл является ключевым веществом жизни растений. В сложную молекулу хлорофилла входят азот, водород, углерод, кислород и магний. Благодаря хлорофиллу зелёные растения поглощают энергию солнца и используют её для расщепления молекулы воды на водород и кислород, тем самым превращают энергию солнца в химическую энергию, необходимую для синтеза органических веществ. И так, процесс роста и плодоношения винограда представляет собой неразрывную цепь химизма веществ с участием воды и энергии солнечного света.

Два уровня органических химических лабораторий. Изначально из удобрений, расщепляемых микроорганизмами и кислотами почвы до ионов, образуются усвояемые растениями питательные вещества, которые, растворяясь в воде, всасываются корнями (восходящий поток) и подаются к листьям – органической химической лаборатории.

Под действием фотосинтеза в листьях молекулы хлорофилла, возбуждаясь квантами солнечного света, высвобождают электроны, которые «запускают» сложную цепь окислительно-восстановительных реакций.

В результате фотосинтеза из атмосферного углерода, воды и питательных элементов в листьях образуются углеводы: глюкоза, сахароза, лактоза с дальнейшим синтезом на клеточном уровне в клетчатку, крахмал, аминокислоты, жиры, белки, ферменты и др. органические вещества. Этот процесс идёт с высвобождением молекулярного кислорода, который в ходе процесса дыхания растений, выделяется в атмосферу. Выделенный растениями кислород обогащает воздух, которым все мы дышим, поглощая кислород, и выделяем углекислый газ, так необходимый растениям.

Из листьев, с участием микроэлементов, синтезированные углеводы транспортируются нисходящим током в растительные клетки – химические лаборатории высшего уровня. В глубине клеток, под действием ферментов, из молекул углеводов с участием азота, фосфора, серы и других элементов строятся сложные молекулы органических кислот, а из них – основополагающие молекулы высшего уровня жизни растений.

Благодаря фотосинтезу, создаются условия для деления клеток, вызывающие развитие, рост и плодоношение винограда.

Если в листьях хлорофилл является источником и двигателем фотосинтеза, то на клеточном уровне эти функции выполняют ферменты – биологические катализаторы. Они организовуют и ускоряют тысячи реакций, проходящих в живых клетках: обмен веществ, деление клеток, дыхание. Все химические процессы в растении направляются ферментами. Ферменты являются возбудителями и ускорителями всех химических превращений.

И так, с чего мы начали? Почему запаздывает созревание урожая, ягоды мелкие, кислые и плохо окрашиваются? Из выше изложенного мы видим, насколько сложны и взаимосвязаны процессы, протекающие в растениях. Недостаток какого-либо элемента или фактора приводит к затормаживанию или сбою всей системы, что приводит к снижению темпов развития, отставанию в росте, снижению урожайности, а также к ослаблению и заболеванию кустов. Из изложенного видно, почему так важно для виноградных кустов обеспечение солнечным освещением, водой, питательными элементами в почве и воздушной вентиляцией листового полога, которая обеспечивает приток с воздухом углекислого газа к листьям. Вот почему кусты в затенении плохо ассимилируют, а недостаток воды и питательных элементов угнетают растения.

Вывод. Исходя из изложенного, можно сделать вывод – для создания оптимальных условий развития виноградных кустов и преследуя цель стабильного получения высоких и экологически чистых урожаев, виноградарю необходимо:


1. Изучение влияния на интенсивность физиологических процессов при их исключении из питательной среды.

2. Изучение специфической роли отдельных микроэлементов, главным образом участия их в определенных ферментных реакциях.

Второй биохимический подход оказался более результативным.

Железо было первым микроэлементом, необходимость которого была открыта Грисом в 1843 - 1844гг.

Необходимость других микроэлементов - бора, марганца, меди, цинка и молибдена, для высших растений была установлена только в 20-ых и 30-ых годах 20 столетия. Установлению их необходимости способствовало вскрытие причин многих заболеваний растений, не вызываемых грибной и бактериальной инфекцией - гниль сердечка сахарной свеклы, серая пятнистость листьев, бронзовая болезнь и др. Все эти болезни оказались результатом физиологического расстройства, вызванного недостатком того или иного микроэлемента, и болезнь ликвидировалась, как только удовлетворялась потребность растения в отсутствовавшем элементе.

Этим элементам принадлежит исключительная роль в обмене веществ. Они, соединяясь с органическими веществами, особенно белками, во много раз повышают свою каталитическую активность. Так, например, железо в составе сложного геминового комплекса в сочетании со специфическим белком повышает каталитическую активность против активности иона железа в 1010 раз.

Бор, алюминий, кобальт, марганец, цинк и медь повышают засухоустойчивость растений. И в данном случае действие микроэлементов обусловлено влиянием на коллоидно-биохимические свойства протоплазмы (повышение гидрофильности и водоудерживающей способности коллоидов). Микроэлементы усиливают также передвижение пластических веществ из листьев в генеративные органы.

Существенные сдвиги вызывают некоторые микроэлементы в скорости прохождения стадий развития. Установлено, что намачивание семян пшеницы в растворах солей Cu, Zn, Mo, B значительно ускоряет прохождение растениями стадии яровизации, тогда как растворы Fe и Mn не оказывали положительного действия или задерживали развитие.

Влияние каждого из элементов зависит от концентрации: оно сказывается на последующем росте надземных органов и корней неодинаково. Так, Cu и Mo стимулируют рост стебля и корней, тогда как Mn и Ni - только стебля, а B и Sr - только корневой.

Сильное положительное влияние оказывала обработка семян Сu на засухоустойчивость растений хлопчатника. Этот эффект обусловлен повышением водоудерживающей способности и сосущей силы клеток листовой паренхимы, изменением анатомического строения листьев в сторону ксерофитности и т.д. Аналогичный эффект наблюдали на озимой пшенице при обработке семян солями B,Cu, Mo, Co, P и К. прохождение световой стадии ускорялось под влиянием B, Co, Mo, Mn, Zn, Cu и Al. Интересно, что это наблюдалось только на длиннодневных растениях (озимая пшеница, овес) и не проявлялось на короткодневных (перилла).

В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я. В. Пейве, М. Я. Школьник, М. В. Каталымов, Б. А. Ягодин и др.

Бор

Бор - один из наиболее важных для растений микроэлементов. Его среднее содержание составляет 0,0001%, или 0,1 мг на 1 кг сухой массы. В боре наиболее нуждаются двудольные растения. Обнаружено значительное содержание бора в цветках, особенно в рыльце и столбиках. В клетке большая часть этого микроэлемента сконцентрирована в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен.

Поглощение бора сильно зависит от pH, а его распределение по растению происходит преимущественно с транспирационным током. Необходимость бора для растений установлена очень давно, но до сих пор неясно, каким образом реализуются его функции: в какие конкретно реакции он включен и каков механизм его участия в отдельных процессах.

Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Недостаток бора вызывает ряд заболеваний: гниль сердечка сахарной свеклы, внутренняя черная пятнистость столовой свеклы и брюквы, болезнь побурения головок цветной капусты, отмирание колосков у пшеницы и даже всего зачаточного колоса у ячменя, пожелтение люцерны и др. Установлено, что под влиянием бора изменяется ряд физиологических процессов: увеличивается оводненность плазмы, усиливается поглощение катионов и особенно кальция и ослабляется поглощение анионов.

Также при недостатке бора нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов, оплодотворение и плодоношение. Бор необходим растениям в течение всего периода их развития. Он не может реутилизироваться и поэтому при борном голодании прежде всего

отмирают конусы нарастания - наиболее типичный симптом борной недостаточности. Анатомические исследования указывают на прекращение деления клеток в меристеме. Одновременно обнаруживаются значительные нарушения нормального расположения элементов флоэмы и ксилемы, вплоть до полной потери этими тканями проводимости. В этом состоят причины обнаруживаемых при борном голодании нарушений передвижения пластических веществ и, прежде всего, сахаров из листьев в осевые и запасные органы растений.

Культуры, наиболее чувствительные к недостаче бора: сахарная и кормовая свекла, рапс, бобовые, люцерна, овощные, яблоня, виноград.

Магний

У высших растений среднее содержание магния составляет 0,02 %. Особенно много магния в растениях короткого дня - кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. Много его накапливается в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре. Накоплению магния в молодых тканях способствует его сравнительно высокая подвижность в растениях, что обусловливает его вторичное использование (реутилизацию) из стареющих тканей. Перемещение магния осуществляется как по ксилеме, так и по флоэме.

В хлоропласте сосредоточено 15% Mg 2+ листа, до 6% его может находиться в составе хлорофилла. При дефиците магния (голодании) доля Mg 2+ в пигменте может достигать даже 50% от общего содержания в листе. Эта функция магния уникальна: ни один другой элемент не может заменить его в хлорофилле. Магний необходим для синтеза протопорфирина 9 - непосредственного предшественника хлорофилла.

Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствии. Магний является активатором многих ферментов. Важной особенностью магния является то, что он связывает фермент с субстратом по типу хелатной связи.

Магний входит в состав фитина (органофосфата), запасного органического вещества. Отвечает за транспорт энергии, активирует фермент, который является катализатором участия СО 2 в процессе фотосинтеза.

Магний необходим для многих ферментов цикла Кребса и гликолиза. Он требуется и для работы ферментов молочнокислого и спиртового брожения.

Магний усиливает синтез эфирных масел, каучука, витаминов А и С.

При повышении степени обеспеченности магнием в растениях возрастает содержание органических и неорганических форм фосфорных соединений. Этот эффект, вероятно, связан с ролью магния в активации ферментов, участвующих в метаболизме фосфора.

Процесс поступления магния в растения может зависеть от степени обеспеченности растений другими катионами. Так, при высоком содержании калия или аммония в почве или питательном растворе уровень магния, особенно в вегетативных частях растений, снижается. В плодах же количество магния при этом не меняется или может даже возрастать. Наоборот, при низком уровне калия или аммония в питательной среде содержание магния в растении повышается. Кальций и марганец также действуют как конкуренты в процессе поглощения магния растениями.

Недостаток в магнии растения испытывают в основном не песчаных почвах. Бедны магнием и кальцием, богаты - сероземы; черноземы занимают промежуточное положение. При снижении pH почвенного раствора магний поступает в растения в меньших количествах.

Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме.

При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая "мраморная" окраска листьев наряду с хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропластов, а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев.

Признаки магниевой недостаточности вначале проявляются на старых листьях, а затем распространяются на молодые листья и органы растения. Высокая и продолжительная освещенность усиливает признаки нехватки магния.

Культуры, чувствительные к недостатку магния: сахарная свекла, картофель, хмель, виноград, орехи, парниковые культуры.

Железо

В составе соединений, содержащих гем (все цитохромы, каталаза, пероксидаза), и в негемовой форме (железосерные центры) железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении. Если для вегетирующих растений железо становится недоступным, то хлороз проявляется только на вновь развивающихся органах. Следовательно, железо прочно связывается в клетках и не способно передвигаться из старых тканей к молодым. Железо необходимо также и для бесцветных растений - грибов и бактерий, поэтому его роль не ограничивается только участием в образовании хлорофилла.

В злаковых культурах хлороз проявляется в виде чередования желтых и зеленых полос вдоль листа. В отдельных случаях дефицит железа может вызвать отмирание молодых побегов.

Дефицит железа вызывает также изменения морфологии корней, индуцируя рост корневых волосков, которые обильно покрывают поверхность корня. Это способствует лучшему контакту с почвой и почвенным раствором, увеличивая поглощение железа.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них - белок ферритин, который содержит железо в негемовой форме. На долю железа может приходиться около 23% сухой массы ферритина. В больших количествах ферритин присутствует в пластидах.

Культуры, чувствительные к недостатку железа: кукуруза, бобовые, картофель, капуста, томаты, виноград, плодовые и цитрусовые, декоративные культуры.

Марганец

Впервые на необходимость для растений марганца обратил внимание Бертран (1897). Среднее его содержание составляет 0,001% или 1 мг на 1 кг сухой массы тканей. В клетки он поступает в форме ионов Mn 2+ . Марганец накапливается в листьях. Установлено участие ионов этого металла в выделении кислорода (фоторазложение воды) и восстановлении CO 2 при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Ионы марганца активируют ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). в связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы.

Велико значение марганца для нормального протекания обмена азотистых соединений. Марганец принимает участие в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируемые рядом ферментов, из которых два (гидроксиламинредуктаза и нитритредуктаза) зависимы от марганца, в связи с чем растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания.

Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона - ауксина.

Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствии марганца хлорофилл быстро разрушается на свету.

Несмотря на значительное содержание марганца в почве, большая его часть труднодоступна для растений, особенно на почвах, имеющих нейтральное значение pH.

Марганец отвечает за окисление железа в организме растений к нетоксичным соединениям. Является необходимым компонентом синтеза витамина С. Интенсифицирует накопление сахара в корнеплодах сахарной свеклы и белка у зерновых культур. Отвечает за процесс усвоения азота. Является активатором фотосинтеза после подмерзания растений.

Симптом заболевания, вызванного недостатком марганца, служит прежде всего появление хлоротичных пятен между жилками листа. У злаков появляются удлиненные полоски хлоротичной ткани серого цвета, затем появляется узкая зона ослабленного тургора, в результате чего пластинка листа свешивается вниз. При резкой недостаточности марганца эти симптомы распространяются и на стебель. Заболевшие листья при развитии заболевания буреют и отмирают.

Болезнь серая пятнистость широко распространена на богатых гумусом почвах, имеющих щелочную реакцию. Этому заболеванию подвержены злаки, особенно овес, пшеница, рожь, кукуруза.

У растений с сетчатым жилкованием листьев при недостатке марганца появляются разбросанные по листу хлоротичные пятна, в большей степени на нижних листьях, чем на верхних.

У свеклы недостаточность марганца вызывает заболевание, известное под названием пятнистой желтухи. На листьях появляются желтые хлоротичные участки, затем края листьев закручиваются вверх.

У гороха при недостатке марганца развивается пятнистость семян. Это заболевание выражается в появлении на семенах гороха коричневых и черных пятен или даже полостей на внутренних поверхностях семядолей.

Хлороз развивается и при очень высоком содержании марганца, в этом случае марганец окисляет железо в нерастворимую окисную форму и хлороз развивается уже от недостатка железа. Избыток же железа вызывает симптомы недостаточности марганца. Наиболее благоприятные соотношения железа и марганца для лучшего роста растений и общего здорового состояния 2:1.

Культуры, чувствительные к недостатку марганца: зерновые колосовые (пшеница, ячмень, овес), кукуруза, горох, соя, картофель, сахарная свекла, вишня, цитрусовые.

Цинк

Содержание цинка в надземных частях бобовых и злаковых растений составляет 15 - 60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая - в семенах. Цинк поступает в растение в форме катиона Zn 2+ , оказывая многостороннее действие на обмен веществ. Он необходим для функционирования ряда ферментов гликолиза. Роль цинка важна также в образовании аминокислоты триптофана. Именно с этим связано влияние цинка на синтез белков, а также фитогормона индолилуксусной кислоты (ауксина), предшественником которой является триптофан. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. Цинк играет важную роль в метаболизме ДНК и РНК, в синтезе белка и клеточном делении. Является активатором ферментов, предотвращает преждевременное старение клеток. Способствует повышению жаро-, засухо - и морозостойкости растений. Цинк долгое время рассматривался как стимулятор и только к 30 гг. прошлого столетия была установлена безусловная необходимость этого элемента для всех высших растений. Болезнь недостаточности цинка широко распространена среди плодовых деревьев. При недостаточности цинка вместо нормально удлиненных побегов с хорошо развитыми листьями больные растения образуют весной розетку мелких скученных жестких листочков. У разных плодовых болезнь обозначается по-разному: мелколистность, розеточная болезнь, пятнистый хлороз, желтуха. Цинк участвует в окислительно-восстановительных процессах, он связан с превращением соединений, содержащих сульфгидрильную группу. Недостаток цинка вызывает подавление процессов углеводного обмена, так как недостаток цинка сильнее всего сказывается на растениях, богатых углеводами. Также при дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корневой системе, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы - в несколько раз возрастает содержание неорганических фосфатов, снижается содержание фосфора в составе нуклеотидов, липидов и нуклеиновых кислот. Кроме того, в 2-3 раза подавляется скорость деления клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей.

Культуры, особенно чувствительные к недостатку цинка: кукуруза, соя, фасоль, хмель, картофель, лен, овощи зеленые, виноград, яблоня и груша, цитрусовые.

Молибден

Наибольшее содержание молибдена характерно для бобовых (0,5 - 20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2,0 мг молибдена на 1 кг сухой массы. Он поступает в растения как анион MoO 4 2- , концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе сосредоточен в основном в хлоропластах.

Молибден принимает участие в восстановлении нитратов, входя в состав нитратредуктазы, а также является компонентом активного центра нитрогеназы бактероидов, фиксирующих атмосферный азот в клубеньках бобовых.

Способствует увеличению содержания хлорофилла, углеводов, каротина, аскорбиновой кислоты и белковых веществ.

Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию.

При недостатке Mo в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдается деформация листовых пластинок. Молибден, как и железо, необходим для биосинтеза легоглобина (леггемоглобина) - белка-переносчика кислорода в клубеньках бобовых. При дефиците клубеньки приобретают желтый или серый цвет, нормальная же их окраска - красная.

При недостатке молибдена резко падает содержание аскорбиновой кислоты, наблюдаются нарушения в фосфорном обмене растений.

У растений, испытывающих дефицит молибдена, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются.

Тормозится рост растений и из-за нарушения синтеза хлорофилла растения выглядят бледно-зелеными. Эти признаки похожи на признаки недостатка азота.

Культуры, чувствительные к недостатку молибдена: зерновые колосовые, бобовые, сахарная свекла, томаты, капуста, люцерна.

Другие микроэлементы

В составе разных видов растений найдено более 60 элементов, из них, кроме отмеченных выше, натрий, силиций, хлор, кобальт, медь, и алюминий рассматриваются некоторыми авторами также как необходимые.

Находящийся в растении кремний пропитывает клеточные стенки и делает их твердыми и устойчивыми против повреждения насекомыми и предохраняет клетки против проникновения грибной инфекции. Также кремний необходим для роста диатомовых водорослей.

Хлор считается стимулятором активности ферментов. Важное значение хлор имеет для зеленых фотосинтезирующих растений. Имеются сведения о влиянии хлора на азотный обмен. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Действие алюминия рассматривается как катализатора. Кроме того, при некотором избыточном накоплении в растении алюминия меняется окраска цветов. Так, например, под влиянием накопления алюминия в растении Hydrangea нормально красные или белые цветы изменяются в синие или фиолетовые.

Натрий накапливается в растениях в значительных количествах, но в жизни их существенной роли не играет, так как может быть полностью исключен из питательного раствора. Однако для галофитов, растений засоленных мест, присутствие натрия благоприятствует росту.

Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий. При дефиците кобальта подавляется синтез леггемоглобина, снижается синтез белка, и уменьшаются размеры бактероидов. Это говорит в пользу необходимости кобальта. Установлена потребность в кобальте для высших растений, не способных к азотфиксации. Показано влияние кобальта на функционирование фотосинтетического аппарата, синтез белка, его связь с ауксиновым обменом. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала.

Медь активизирует образование белков и витаминов группы В. Как и цинк, активирует фермент, предотвращает преждевременное старение клеток растения. Принимает участие в метаболизме белков и углеводов в растении. Существенно повышает иммунитет растения грибковым и бактериальным заболеваниям. Этого элемента очень мало в песчаных и торфянистых почвах. Недостаток меди проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания. Наблюдается отмирание краев молодых листьев с последующим их хлорозом и скручиванием; замедляется высвобождение пыльцовых зерен, вследствие чего снижается опыление растений. Наблюдается существенное снижение урожайности культуры (если отсутствуют визуальные признаки дефицита микроэлемента); у злаковых культур может наблюдаться полегание; у плодовых культур может наблюдаться поникание ветвей и кроны.



Для роста и развития растения и овощам ему необходимы элементы питания. Соотношение элементов питания различно для видов, сортов, периода выращивания и возраста растения.

❖ Азот — основной биогенный элемент для овощных растений, который входит в состав белка и нуклеиновых кислот. Поступившие в растение минеральные формы азота проходят сложный цикл превращений, включаясь в состав органических кислот. Процесс восстановления нитратов катализируется ферментами и имеет несколько промежуточных стадий. Активность восстанавливающих ферментов зависит от магния и микроэлементов: молибдена, меди, железа и марганца.

Нитратный азот способен накапливаться в значительных количествах, что безопасно для растений, но содержание нитратов в овощах выше определенного уровня вредно для человека.

Свободный аммиак в растениях находится в незначительных количествах. Это связано с тем, что он быстро взаимодействует с углеводами, содержащимися в растениях. Результатом взаимодействия является образование первичных аминокислот. Чрезмерное накопление аммиака, особенно при дефиците углеводов, ведет к отравлению растений.

Качество продукции зависит от того, какие из соединений азота усваиваются в больших количествах. При усиленном аммиачном питании повышается восстановительная способность растительной клетки и идет преимущественное накопление восстановительных соединений. При нитратном питании усиливается окислительная способность клеточного сока, образуется больше органических кислот.

Усвоение растениями аммиачного и нитратного азота зависит от концентрации питательного раствора, его реакции, содержания сопутствующих элементов, обеспеченности растений углеводами и биологических особенностей культуры.

❖ Фосфор содержится в растениях в значительно меньших количествах, чем азот. Он выступает в роли спутника азота, при его недостатке у растений усиливается накопление нитратных форм азота. Наибольшее количество фосфора концентрируется в репродуктивных органах: в 3-6 раз больше, чем в вегетативных.

Фосфор содержится в нуклеиновых кислотах ДНК и РНК, которые являются носителями наследственной информации. Соединения фосфора с белками (фосфоропротеиды) являются важнейшими растительными ферментами. Фосфор, поступающий в растение, способствует накоплению крахмала, Сахаров, красящих и ароматических веществ, повышает лежкость плодов.

❖ Калий регулирует водный обмен растений, физическое состоя-ние коллоидов цитоплазмы, ее набухаемость и вязкость. Под влиянием калия возрастает водоудерживающая способность протоплазмы, что уменьшает опасность кратковременного увядания растений при недостатке влаги. Наличие калия в растительной клетке обеспечивает нормальный ход окислительных процессов, углеводный и азотный обмен. Накопление калия способствует активизации обменных процессов растений. Калий способствует повышению иммунитета, усиливает использование аммиачного азота при синтезе аминокислот и белка. Для калия характерна высокая подвижность — отток из более старых листьев в более молодые. Фактически растение получает возможность использовать калий повторно.

❖ Кальций играет важную роль в фотосинтезе, передвижении углеводов в растении. Он участвует в формировании клеточных оболочек, обуславливает обводненность и поддержание структуры клеточных органелл. Недостаток кальция оказывает влияние на развитие корневой системы, замедляется рост листьев, они отмирают. Недостаток кальция проявляется на молодых растениях.

❖ Магний входит в состав молекулы хлорофилла и принимает участие в фотосинтезе, а также входит в состав пектиновых веществ и фитина. При недостатке магния содержание хлорофилла в листьях уменьшается, проявляется «мраморовидность». Магний и фосфор находятся в растущих частях растения. Магний накапливается в семенах. Магний участвует в передвижении фосфора в растениях. Активизирует ферменты. Этот элемент способствует накоплению эфирных масел и жиров. При недостач магния усиливаются окислительные процессы, возрастает активность фермента пероксидазы, снижается содержание инвертного сахара и аскорбиновой кислоты



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Феномен доминанты Кто исследовал явление доминанты Феномен доминанты Кто исследовал явление доминанты Дополнительное профессиональное образование Дополнительное образование не является Дополнительное профессиональное образование Дополнительное образование не является Репликация - это удвоение: клетка от клетки Репликация - это удвоение: клетка от клетки