Регулируемый привод. Векторное управление с обратной связью. Сборка преобразователя частоты для асинхронного двигателя своими руками

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

На сегодняшний момент на российском рынке представлены десятки марок низковольтных преобразователей частоты иностранных и российских производителей. Среди них можно отметить ведущие европейские компании: Siemens, ABB, SEW Eurodrive, Control Techniques (корпорация Emerson), Schneider Electric, Danfoss, K.E.B., Lenze, Allen-Breadly (корпорация Rockwell Automation), Bosch Rexroth. Продукция этих производителей широко представлена, существует разветвленная дилерская сеть. Пока менее известна продукция таких компаний из Европы, как Emotron, Vacon, SSD Drives (корпорация Parker), Elettronica Santerno. Присутствуют и продукты американских производителей – корпорации General Electric, AC Technology International (входит в концерн Lenze) и WEG (Бразилия).

Серьезную конкуренцию европейским и американским производителям составляют компании из Азии. Прежде всего, это компании из Японии: Mitsubishi Electric, Omron-Yaskawa, Panasonic, Hitachi, Toshiba, Fuji Electric. Широко представлены корейские и тайваньские марки – LG Industrial Systems, HYUNDAI Electronics, Delta Electronics, Tecorp, Long Shenq Electronic, Mecapion.

Среди отечественных производителей наиболее известным является компания Веспер. Можно также отметить специализированные преобразователи марок АПЧ, ЭПВ (ОАО «Электроаппарат»), РЭН2К или РЭМС (МКЕ).

Большинство производителей предлагаeт преобразователи частоты, способные работать в разомкнутом и замкнутом контуре управления (векторное управление), с наборами программируемых входов и выходов, со встроенным ПИД-регулятором. Даже в самых дешевых корейских или тайваньских преобразователях частоты можно встретить так называемый бессенсорный, т.е. без датчика положения ротора, векторный режим работы. Диапазон регулирования может составлять 1:50.

Однако ведущие производители предлагают более совершенный режим векторного управления без датчика обратной связи, основанный на передовых алгоритмах управления. Одним из первопроходцев в этой области была компания ABB предложившая DTR (Direct torque control) – метод управления скоростью и моментом без датчика обратной связи. Английская компания Control Techniques реализовала режим управления потокосцеплением ротора (RFC) без использования датчика обратной связи, что позволяет управлять моментом с точностью достаточной для большинства задач, расширить диапазон регулирования до 100, обеспечить высокую точность поддержания скорости при низкой частоте вращения и достичь такого же тока перегрузки, как в режимах замкнутого контура.

Крупные производители предлагают многофункциональные приборы с целым набором опций (модули расширения, тормозные резисторы, встраиваемые контроллеры, фильтры, дроссели и т.д.) или комплектуют их системами ЧПУ или контроллерами движения.

Все чаще можно встретить применение привода в рекуперативном режиме, т.е. с возможностью возвращать энергию, выделяемую при торможении, обратно в сеть (лифты, эскалаторы, подъемные краны). Обычно для этого используется специализированный привод с управляемым выпрямителем. Ведущие компании, например, Control Techniques, предлагают рекуперацию как один из режимов работы преобразователя частоты Unidrive SP, тем самым получая существенную экономию энергии и высокий КПД системы.

Описанный ассортимент даёт возможность инженеру выбрать подходящий по цене преобразователь частоты с широким набором встроенных функций и программ. При этом ведущие европейские марки, например из Великобритании и Германии, успешно конкурируют по цене при большем функционале и качестве

Предлагаем вашему вниманию описание некоторых продуктов, доступных на российском рынке. Информацию о поставщиках вы можете найти на нашем сайте:

Компания Rockwell Automation, бессменный лидер на силовом электротехническом рынке, выпустила новую серию частотных электроприводов Allen-Bradley® PowerFlex® в диапазоне мощностей от 0.25kW до 6770kW. Новая высокоэффективная серия сочетает в себе компактное конструктивное исполнение, широкие функциональные возможности и отличные эксплуатационные характеристики. Применяется в пищевой, бумажной, текстильной промышленности, металлообработке, деревообработке, насосно-вентиляционном оборудовании и т.д. В палитре представлены два класса приводов – Компонентный и Архитектурный. Модели из Компонентного класса предназначены для решения стандартных задач регулирования, а приводы Архитектурного класса за счет гибкого изменения конфигурации могут быть легко адаптированы и встроены в системы управления различного силового оборудования. Все модели предлагают исключительные коммуникационные возможности, широкую гамму панелей оператора и средств программирования, что в значительной степени облегчает эксплуатацию и ускоряет запуск оборудования.

PowerFlex ® 4

Привод Powerflex 4 является наиболее компактным и недорогим представителем данного семейства. Являясь идеальным устройством регулирования скорости, данная модель обеспечивает универсальность применения с соблюдением требований производителей и конечных пользователей в отношении гибкости, компактности и простоты эксплуатации.

В приводе реализован вольт-частотный закон управления с возможностью компенсации скольжения. Прекрасным дополнением к данной модели является версия ультракомпактного приводы Power@Flex4M, c расширенным рабочим диапазоном мощностей до 2.2 kW при однофазном исполнении и до 11kW-для трехфазного напряжения 400VAC. Предлагаемая ценовая шкала на данную модель позволяет надеяться если не на хит сезона, то на достаточно широкую ее популярность.

PowerFlex ® 7000

Привода серии PowerFlex 7000 являются уже третьим поколением приводов среднего напряжения от Rockwell Automation. Предназначены для регулирования скорости, момента, направления вращения асинхронных и синхронных двигателей переменного тока. Уникальный дизайн серии PowerFlex 7000 представляет собой запатентованную разработку под маркой PowerCage силовых блоков, содержащих основные силовые компоненты приводы. Новый модульный дизайн прост и представлен небольшим количеством компонентов, что обеспечивает высокую надежность и облегчает эксплуатацию. К основным преимуществам приводов среднего напряжения можно отнести: уменьшение эксплуатационных расходов, возможность запуска больших двигателей от небольших источников питания и повышение качественных характеристик контролируемого технологического процесса и используемого оборудования.

В зависимости от выходной мощности поставляются привода трех типоразмеров:

Корпус А – Диапазон мощностей 150-900 кВт при питающем напряжении 2400-6600 В

Корпус В – Диапазон мощностей 150-4100 кВт при питающем напряжении 2400-6600В

Корпус С – Диапазон мощностей 2240-6770 кВт при питающем напряжении 4160-6600 В

Приводы PowerFlex 7000 могут поставляться с таких вариантами исполнения, как 6-пульсная или 18-пульсная схема или с ШИМ-преобразователем, что дает пользователю существенную гибкость в вопросе снижения влияния гармоник питающей сети. Кроме этого, он обеспечивает прямое бессенсорное векторное управление для улучшения регулирования в зоне низких скоростей, по сравнению с приводами, использующими метод регулирования U/f, а также возможность регулирования момента двигателя, как это осуществляется в приводах постоянного тока. В качестве панели оператора предлагается модуль с жидкокристаллическим дисплеем на 16 строк и 40 знаков.

Больший момент инерции без дополнительного редуктора

Малоинерционные сервомоторы от Beckhoff серии AM3000, которые производятся на основе новых материалов и технологии, используются, главным образом, в динамичных приложениях с высокими нагрузками, например, для привода осей металлообрабатывающих станков или устройств без редукторов. В сочетании с большой инерцией ротора, они предлагают те же преимущества, что и моторы серии AM3xxx, например, полюсную статорную обмотку, которая позволяет значительно уменьшить общие габариты мотора. Фланцы, соединители и валы моторов новой серии AM3500 совместимы с хорошо проверенными моторами AM3000. Новые модели AM3500 выпускаются с фланцами размеров 3 – 6 и имеют момент вращения от 1,9 до 15 Нм. Скорости вращения моторов составляют от 3000 до 6000 оборотов в минуту. Для систем обратной связи имеются координатные преобразователи или абсолютные датчики положения (одно- или многооборотные). Корпус относится к классу защиты IP 64; возможны опции с классом защиты IP 65/67. Эта серия моторов соответствует нормам безопасности CE, UL и CSA.

Новое поколение приводов

Линейка Emotron пополнилась приводами NGD: FDU2.0, VFX2.0 (мощностью от 0,75 кВт до 1,6 МВт) и VSC/VSA (0,18–7,5 кВт). Приводы с регулируемой скоростью FDU2.0 (для центробежных механизмов) и VFX2.0 (для поршневых) позволяют пользователю устанавливать эксплутационные параметры в необходимых единицах, имеют съемную панель управления с функцией копирования настроек, модели до 132 кВт имеют стандартное экономичное исполнение IP54 (модели от 160 до 800 кВт также могут быть установлены в специальные компактные корпуса IP54). Обмен данными в ходе процесса осуществляется с помощью Fieldbus (Profibus-DP, DeviceNet, Ethernet), через порты (RS-232, RS-485, Modbus RTU), а также аналоговые и цифровые выходы.

Малогабаритные векторные приводы VSA и VSC специально спроектированы для регулирования скорости трехфазных асинхронных двигателей небольшой мощности: модели с входным напряжением 220 В доступны в диапазоне от 0,18 до 2,2 кВт, а модели 380 В – от 0,75 до 7,5 кВт.

Cемейство ATV61-ATV71

Рынок преобразователей частоты в России развивается стремительными темпами. Не удивительно, что он привлекает многочисленных производителей, причем, как крупных, так и малоизвестных. В настоящий момент российский рынок очень сегментирован. Но вот парадокс: несмотря на то, что на рынке присутствует в настоящий момент более 30 брэндов, существенная доля рынка принадлежит 7 – 8 компаниям, а явных лидеров – не более двух. При этом великолепные технические характеристики оборудования еще не являются гарантией успеха. Лидирующие позиции в России смогли занять компании, инвестирующие существенные средства в развитие бизнеса и бизнес – инфраструктуры.

Компания Schneider Electric, интересы которой в России представляет ЗАО «Шнейдер Электрик», в 2007 году значительно расширилa продуктовое предложение. Теперь семейство ATV61-ATV71 пополнилось модификацией на напряжение 690 В, появилось множество версий со степенью защиты IP54. Появилась также специальная модель для лифтового и кранового привода ATV71*383 с уникальной технологией управления синхронным двигателем. К концу 2008 года в линейке Альтиваров появится аппарат мощностью 2400 кВт на 690В. Altivar 61 теперь может работать в схемах с повышающим трансформатором.

Новая экономичная серия Altivar 21 разработана специально для систем отопления, кондиционирования и вентиляции жилых и общественных зданий. Altivar 21 управляет двигателями 0.75 до 75 кВт на напряжения 380 В и 200 … 240 В.

Altivar 21 имеет множество прикладных функций:

– встроенный ПИ регулятор;

– «подхват налету»;

– функция «сон/пробуждение»;

– управление защитами и сигнализацией;

– устойчивость к сетевым помехам, работа при температуре до + 50°C и просадке напряжения -50%.

С новой безконденсаторной технологией Altivar 21 не требует устройств для снижения гармоник. Суммарный коэффициент – THDI 30%. Отказ от конденсаторов и применение более мощных полупроводников увеличили время наработки.

Лидерство Schneider Electric на рынке преобразовательной техники является результатом серьезной работы по повышению отказоустойчивости преобразователей. Параметр MTTF для некоторых моделей составляет до 640000 часов. Altivar работает при просадке напряжения до -50%, температуре до +50%, в химически агрессивных средах и при импульсных помехах в сети. Это серьезный аргумент для повторной покупки. Доверие покупателя к оборудованию и репутации фирмы трудно переоценить.

Приводоы от SICK

Современное производство требует автоматизации многих ручных операций по настройке различных параметров на различных станках и упаковочных машинах. Зачастую у оператора возникает необходимость в изменении геометрических параметров выпускаемого изделия или других подобных задач. В этом случае приводы позиционирования от SICK-Stegmann – идеальное недорогое устройство для подобной операции.

HIPERDRIVE® – приводы позиционирования етo результат интеграции бесщеточного двигателя постоянного тока, редуктора, абсолютного многооборотного энкодера, силовой и управляющей электроники в одном устройстве. Кроме всего прочего, приводы имеют сетевой интерфейс Profibus или DeviceNet. Данное устройство нацелено на выполнение задач позиционирования «точка – точка» и представляет собой устройствo типа «черный ящик», которым легко управлять.

В настоящее время для подобных задач используются сервоприводы. Но использование подобных систем имеет ряд недостатков. Прежде всего, это экономически не оправдано. Системы на основе сервоприводов, как правило, требуют также инвертора, тормоза, абсолютного энкодера.

Основные преимущества данных приводов:

– Высоко – интегрированное устройство

    Уменьшение размера привода

    Легкая сборка и настройка

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) - система управления скоростью вращения асинхронного (синхронного) электродвигателя . Состоит из собственно электродвигателя и частотного преобразователя.

Частотный преобразователь (преобразователь частоты) - это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или дроссель, а для уменьшения электромагнитных помех - EMC -фильтр.

Применение

ЧРП применяются в конвейерных системах, резательных автоматах, управлении приводами мешалок, насосов, вентиляторов, компрессоров и т.п. ЧРП нашёл место в бытовых кондиционерах. Всё большую популярность ЧРП приобретает в городском электротранспорте, особенно в троллейбусах . Применение позволяет:

  • повысить точность регулирования
  • снизить расход электроэнергии в случае переменной нагрузки.

Применение преобразователей частоты на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов, по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, в большую сторону) и постоянно функционируют в заданном режиме с постоянной частотой вращения, не учитывая при этом колебания расходов и напоров, вызванных переменным водопотреблением. Т.е. простыми словами, даже когда не требуется значительных усилий, насосы продолжают работу в заданном рабочем темпе, при этом расходуя значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает.

Рождение регулируемого электропривода позволило пойти от обратного в технологии системы подачи: теперь не насосная установка диктует условия, а непосредственно сами характеристики трубопроводов . Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного применения. Частотное регулирование скорости вращения вала асинхронного двигателя, осуществляется с помощью электронного устройства, которое принято называть частотный преобразователь. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. При такой частоте сети скорость вращения двигателя составляет 3000 (50 Гц х 60 сек) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (т.к. это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя, понизить частоту подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, а, следовательно, измениться напор и производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя при помощи специального датчика давления, установленного в трубопроводе, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс , что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,4 до 500 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

Экономить электроэнергию, настроив работу электропривода в зависимости от реального водопотребления (эффект экономии 20-50%);

Снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5%);

Уменьшить расходы на профилактический и капитальный ремонт сооружений и оборудования (всей инфраструктуры подачи воды), в результате пресечения аварийных ситуаций, вызванных в частности гидравлическим ударом , который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);

Достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;

Увеличить напор выше обычного в случае необходимости;

Комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно. По оценкам уже реализованных объектов, срок окупаемости проекта по внедрению преобразователей частоты составляет 1-2 года.

Потери энергии при торможении двигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются подъёмники, лифты, центрифуги, намоточные машины и т.п.

Однако, в настоящий момент уже существуют преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. Интересно также, что для некоторого ряда мощностей стоимость установки преобразователя частоты с тормозными резисторами часто сопоставима со стоимостью установки преобразователя частоты со встроенным рекуператором, даже без учёта сэкономленной электроэнергии.

В этом случае, установка начинает "приносить деньги" фактически сразу после ввода в эксплуатацию.

Регулируемый электропривод предназначен для управления двигателем путем контроля параметров. Скорость прямо пропорциональна частоте. Поэтому, варьируя частотой, можно поддерживать скорость вращения вала мотора, заданную согласно технологии. Пошаговое описание рабочего процесса для частотно-регулируемого привода (ЧРП) выглядит примерно так.

  1. Шаг первый. Преобразование диодным силовым выпрямителем одно- или трехфазного входного тока в постоянный.
  2. Шаг второй. Контроль преобразователем частоты за крутящим моментом и скоростью вращения вала электродвигателя.
  3. Шаг третий. Управление выходным напряжением, поддерживание постоянного соотношения U/f.

Устройство, выполняющее на выходе системы обратную функцию генерации постоянного тока в переменный, именуется инвертором. Избавление от пульсаций на шине достигается путем добавления дросселя и конденсатора фильтра.

Как выбрать частотно-регулируемый электропривод

Преобладающее число частотных преобразователей изготавливаются со встроенным фильтром электромагнитной совместимости (ЭМС).

Различаются такие виды управления, как , бездатчиковое и датчиковое векторное, и др. Согласно заданным приоритетам в принятии управленческих решений, приводы выбираются по:

  • типу нагрузки;
  • напряжению и номиналу двигателя;
  • режиму управления;
  • регулировки;
  • ЭМС и т. д.

Если ЧРП предназначен для асинхронного двигателя с большим сроком эксплуатации, то рекомендуется выбирать частотный преобразователь с завышенным током на выходе.С помощью современных преобразователей частоты возможно управление с пульта, по интерфейсу или комбинированным методом.

Технические особенности применения частотного электропривода

  1. Для обеспечения высокой производительности можно свободно переключаться на любой режим в настройках.
  2. Практически все устройства обладают диагностическими функциями, что позволяет быстро устранить возникшую неполадку. Однако рекомендуется в первую очередь проверить настройки, исключить вероятность непроизвольных действий работников.
  3. Регулируемыйприводможетсинхронизировать конвейерные процессы, либо задавать определённое соотношение взаимозависимых величин. Сокращение оборудования ведёт к оптимизации технологии.
  4. В состоянии автонастройки параметры двигателя автоматически заносятся в память преобразователя частоты. Благодаря чему повышается точность вычисления момента, и улучшается компенсация скольжения.

Область применения

Производителями предлагается широкий ассортимент приводов, используемых в областях, где задействованы электродвигатели. Идеальное решение для всех видов нагрузки, и вентиляторов. Системы среднего класса используются на угольных электростанциях, в горнодобывающей промышленности, на мельницах, в жилищно-коммунальном хозяйстве и т. д. Диапазон номиналов выглядит таким образом: 3 кВ, 3.3 кВ, 4.16 кВ, 6 кВ, 6.6 кВ, 10 кВ и 11 кВ.

С появлением регулируемого электропривода контроль давления воды у конечного потребителя не вызывает проблем. Интерфейс с продуманной структурой сценариев отлично подходит для управления насосным оборудованием. Благодаря компактной конструкции, привод может быть установлен в шкаф различного исполнения. Продукты нового поколения обладают свойствами передовой техники:

  • высокая скорость и точность управления в векторном режиме;
  • существенная экономия электроэнергии;
  • быстрые динамические характеристики;
  • большой низкочастотный вращающий момент;
  • двойное торможение и т. д.

Назначение и технические показатели

Комплектные ЧРП напряжением до и выше 1 кВ (предназначенные для приема и преобразования энергии, защиты электрооборудования от токов КЗ, перегрузки) позволяют:

  • плавно запускать двигатель, а, следовательно, уменьшать его износ;
  • останавливать, поддерживать частоту вращения вала двигателя.

Комплектные ЧРП шкафного исполнения до 1кВ выполняют те же задачи по отношению к двигателям с мощностью 0,55 – 800 кВт. Привод нормально работает, когда напряжение в электросети находится в пределах от -15% до +10%. При безостановочной работе снижение мощности наступает, если напряжение составляет 85%-65%. Общий коэффициент мощности cosj = 0,99. Выходное напряжение автоматически регулируется посредством автоматического включение резерва (АВР).

Преимущества использования

С точки зрения оптимизации и потенциальные преимущества предоставляют возможность:

  • регулировать процесс с высокой точностью;
  • удалённо диагностировать привод;
  • учитывать моточасы;
  • следить за неисправностью и старением механизмов;
  • повышать ресурс машин;
  • значительно снижать акустический шум электродвигателя.

Заключение

Что такое ЧРП? Это мотор-контроллер, который управляет электродвигателем за счет регулировки частоты входной сети, и одновременно защищает агрегат от различных неисправностей (токовой перегрузки, токов КЗ).

Электрические приводы (выполняющие три функции, связанные со скоростью, управлением и торможением) являются незаменимым устройством для работы электродвигателей и других вращающихся машин. Системы активно применяются во многих сферах производства: в нефтегазовой отрасли, атомной энергетике, деревообработке и др.

Частотные преобразователи предназначены для плавного регулирования скорости асинхронного двигателя за счет создания на выходе преобразователя трехфазного напряжения переменной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f , в наиболее совершенных преобразователях реализовано так называемое векторное управление .
Принцип работы частотного преобразователя или как его часто называют - инвертора: переменное напряжение промышленной сети выпрямляется блоком выпрямительных диодов и фильтруется батареей конденсаторов большой емкости для минимизации пульсаций полученного напряжения. Это напряжение подается на мостовую схему, включающую шесть управляемых IGBT или MOSFET транзисторов с диодами, включенными антипараллельно для защиты транзисторов от пробоя напряжением обратной полярности, возникающем при работе с обмотками двигателя. Кроме того, в схему иногда включают цепь "слива" энергии - транзистор с резистором большой мощности рассеивания. Эту схему используют в режиме торможения, чтобы гасить генерируемое напряжение двигателем и обезопасить конденсаторы от перезарядки и выхода из строя.
Блок-схема инвертора показана ниже.
Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.
Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.
Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).
Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.
Регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.
Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.
Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.
Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статорной обмотке асинхронного двигателя.
Преимущества использования регулируемого электропривода в технологических процессах
Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.
Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора. При использовании частотных регуляторов обеспечивается плавная регулировка скорости вращения позволяет в большинстве случаев отказаться от использования редукторов, вариаторов, дросселей и другой регулирующей аппаратуры.
При подключении через частотный преобразователь пуск двигателя происходит плавно, без пусковых токов и ударов, что снижает нагрузку на двигатель и механизмы, тем самым увеличивает срок их службы.
Перспективность частотного регулирования наглядно видна из рисунка


Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.
Структура частотного преобразователя
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.
Принцип работы преобразователя частоты
Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора, системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.
Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.


Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3).
Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодулирована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.
Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.
Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.
Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.
Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.
За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.


И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Вариант схемы подключения частотного преобразователя фирмы Omron.

Подключение частотных преобразователей с соблюдением требований ЭМС

Монтаж и подключение с соблюдением требований ЭМС подробно описаны в соответствующих руководствах на устройства.

Техническая информация преобразователи

Частотное регулирование угловой скорости вращения электропривода с асинхронным двигателем в настоящее время широко применяется, так как позволяет в широком интервале плавно изменять обороты вращения ротора как выше, так и ниже номинальных значении.

Частотные преобразователи являются современными, высокотехнологичными устройствами, обладающими большим диапазоном регулирования, имеющими обширный набор функций для управления асинхронными двигателями. Высочайшее качество и надежность дают возможность применять их в различных отраслях для управления приводами насосов, вентиляторов, транспортеров и т.д.

Частотные преобразователи по напряжению питания подразделяются на однофазные и трехфазные, а но конструктивному исполнению на электромашинные вращающиеся и статические. В электромашинных преобразователях переменная частота получается за счет использования обычных или специальных электрических машин. В изменение частоты питающего тока достигается за счет применения не имеющих движения электрических элементов.



Преобразователи частоты для однофазной сети позволяют обеспечить электропривод производственного оборудования мощностью до 7,5 кВт. Особенностью конструкции современных однофазных преобразователей является то, что на входе имеется одна фаза с напряжением 220В, а на выходе - три фазы с тем же значением напряжения, что позволяет подключать к устройству трехфазные электродвигатели без применения конденсаторов.

Преобразователи частоты с питанием от трехфазной сети 380В выпускаются в диапазоне мощностей от 0,75 до 630 кВт. В зависимости от величины мощности устройства изготавливаются в полимерных комбинированных и металлических корпусах.

Самой популярной стратегией управления асинхронными электродвигателями является векторное управление. В настоящее время большинство частотных преобразователей реализуют векторное управление или даже векторное бездатчиковое управление (этот тренд встречается в частотных преобразователях, первоначально реализующих скалярное управление и не имеющих клемм для подключения датчика скорости).

Исходя из вида нагрузки на выходе, преобразователи частоты подразделяются по типу исполнения:

    для насосного и вентиляторного привода;

    для общепромышленного электропривода;

    эксплуатируется в составе электродвигателей, работающих с перегрузкой.


Современные преобразователи частоты обладают разнообразным набором функциональных особенностей, например, имеют ручное и автоматическое управление скоростью и направлением вращения двигателя, а также на панели управления. Наделены возможностью регулирования диапазона выходных частот от 0 до 800 Гц.

Преобразователи способны выполнять автоматическое управление асинхронным двигателем по сигналам с периферийных датчиков и приводить в действие электропривод по заданному временному алгоритму. Поддерживать функции автоматического восстановления режима работы при кратковременном прерывании питания. Выполнять управление переходными процессами с удаленного пульта и осуществлять защиту электродвигателей от перегрузок.

Связь между угловой скоростью вращения и частотой питающего тока вытекает из уравнения

ω о = 2πf 1 /p

При неизменном напряжении источника питания U1 и изменении частоты изменяется магнитный поток асинхронного двигателя. При этом для лучшего использования магнитной системы при снижении частоты питания необходимо пропорционально уменьшать напряжение, иначе значительно увеличатся намагничивающий ток и потери в стали.

Аналогично при увеличении частоты питания следует пропорционально увеличивать напряжение, чтобы сохранить магнитный поток постоянным, так как в противном случае (при постоянном моменте на валу) это приведет к нарастанию тока ротора, перегрузке его обмоток по току, снижению максимального момента.

Рациональный закон регулирования напряжения зависли от характера момента сопротивления.

При постоянном моменте статической нагрузки (Mс = const) напряжение должно регулироваться пропорционально его частоте U1/f1 = const. Для вентиляторного характера нагрузки соотношение принимает вид U1/f 2 1 = const.

При моменте нагрузки, обратно пропорциональном скорости U1/√ f1 = const.

На рисунках ниже представлены упрощенная схема подключения и механические характеристики асинхронного двигателя при частотном регулировании угловой скорости.

Частотное регулирование скорости асинхронного двигателя позволяет изменять угловую скорость вращения в диапазоне - 20...30 к 1. Регулирование скорости асинхронного двигателя вниз от основной осуществляется практически до нуля.

При изменении частоты питающей сети верхний предел частоты вращения асинхронного двигателя зависит от ее механических свойств, тем более что на частотах выше номинальной асинхронные двигатель работает с лучшими энергетическими показателями, чем на пониженных частотах. Поэтому, если в системе привода используется редуктор, это управление двигателем по частоте следует производить не только вниз, но и вверх от номинальной точки, вплоть до максимальной частоты вращения, допустимой но условиям механической прочности ротора.

При увеличении оборотов вращения двигателя выше указанного значения в ею паспорте частота источника питания не должна превышать номинальную не более чем 1,5 - 2 раза.

Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности мри гаком регулировании невелики, поскольку не сопровождаются увеличением . Получаемые при этом механические характеристики обладают высокой жесткостью.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования