Расчет рециркуляции водяного котла. Виды рециркуляционного оборудования. Монтаж системы с использованием двухконтурного котла со встроенным бойлером

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 - 1,5 Гкал/ч.

Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.

Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 - котел водогрейный; 2 - насос сетевой; 3 - насос рециркуляционный; 4 - насос сырой воды; 5 - насос подпиточной воды; 6 - бак подпиточной воды; 7 - подогреватель сырой воды; 8 - подогреватель химии чески очищенной воды; 9 - охладитель подпиточной воды; 10 - деаэратор; 11 - охладитель выпара.

Вода из обратной линии тепловых сетей с небольшим напором (20 - 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.

Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.

Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.

Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:

при работе на природном газе - не ниже 60°С; при работе на малосернистом мазуте - не ниже 70°С; при работе на высокосернистом мазуте - не ниже 110°С.

В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.

Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.

Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха - от -13°С до - 40°С разработаны Теплоэлектропроектом.

Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:

где t вн - температура воздуха внутри отапливаемых помещений,°С; t H - расчетная температура наружного воздуха для отопления,°С; t′ H - изменяющаяся во времени температура наружного воздуха,°С;π′ i - температура воды в подающем трубопроводе при t н °С; π 2 - температура воды в обратном трубопроводе при t н °С;tн - температура воды в подающем трубопроводе при t′ н,°С; ∆т - расчетный перепад температур, ∆t = π 1 - π 2 ,°С; θ =π з -π 2 - расчетный перепад температур в местной системе,°С; π 3 = π 1 + aπ 2 / 1+ a - расчетная температура воды, поступающей в отопительный прибор, °С; π′ 2 - температура воды, идущей в обратный трубопровод от прибора при t" H ,°С; а - коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.

Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха - 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.

Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.

Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации в размере до 3 % установленной теплопроизводительности всех котлов.

Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.

Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м 3 и для промышленных предприятий - 15 м 3 .

С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 - 50 м 3 , для промышленных предприятий - 25 - 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.

Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 - котел водогрейный; 2 - насос рециркуляционный; 3 - насос сетевой; 4 - насос сетевой летний; 5 - насос сырой воды; 6 - насос конденсатный; 7 - бак конденсатный; 8 - подогреватель сырой воды; 9 - подогреватель химически очищенной воды; 10 - деаэратор; 11 - охладитель выпара.

Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС - 20 для закрытой системы теплоснабжения показана на рис. 5.8.

В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой - деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами - теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).

Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.

При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.

Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 - котел водогрейный, 2 - рециркуляционный, 3 - насос сетевой, 4 - насос сетевой летний.

Рис. 5-10. Агрегатная компоновка котлов КВ - ГМ - 100, сетевых и рециркуляционных насосов. 1 - насос водогрейный; 2 - насос сетевой; 3 - насос рециркуляционный.

Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.

Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ - 30М, КВ - ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.

ВОЗМОЖНОСТИ ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ В ВОДОГРЕЙНЫХ КОТЕЛЬНЫХ

К.т.н. Л. А. Репин, директор, Д.Н. Тарасов, инженер, А.В. Макеева, инженер, ЗАО «Южно-русская энергетическая компания», г. Краснодар

Опыт последних лет эксплуатации российских систем теплоснабжения в зимних условиях показывает, что нередки случаи нарушения электроснабжения источников тепла. При этом прекращение подачи электроэнергии в котельные может привести к серьезным последствиям как в самой котельной (остановка вентиляторов, дымососов, выход из строя автоматики и защиты), так и вне ее (замерзание теплотрасс, систем отопления зданий и т.п.).

Одним из известных и в то же время эффективных решений этой проблемы, для относительно крупных паровых котельных, является использование турбогенераторных установок, работающих на избыточном давлении пара, т.е. организация когенерации на базе внешнего теплового потребления . Это позволяет не только увеличить эффективность использования топлива и улучшить экономические показатели источника тепла, но и, обеспечив его электроснабжение от собственного электрогенератора, повысить надежность работы системы теплоснабжения.

Применительно к коммунальной теплоэнергетике такое решение представляется нереальным, поскольку подавляющее большинство котельных являются водогрейными. В этом случае для повышения надежности практикуется установка на тепловом источнике дизель-генераторов, которые в случае аварии в системе электроснабжения могут обеспечить собственные нужды котельной. Однако это требует существенных

затрат, а коэффициент использования установленного оборудования приближается к нулю.

В данной статье предлагается другое решение этой проблемы. Суть его состоит в организации собственного производства электрической энергии в водогрейной котельной на базе осуществления цикла Ренкина, используя в качестве рабочего тела низкокипящее вещество, которое в дальнейшем будем называть «агент» .

Схемы электростанций с использованием низкокипящих рабочих тел достаточно известны и применяются, в основном, на геотермальных месторождениях с целью утилизации теплоты сбросных вод . Однако основным их недостатком является низкий термический КПД цикла, что связано с необходимостью отвода теплоты конденсации агента в окружающую среду. В водогрейных котельных и в паровых котельных малой мощности (где другие варианты когенерации нецелесообразны) теплоту конденсации можно использовать для предварительного подогрева сырой воды, поступающей на ХВО или идущей в подогреватели ГВС в случае, если они установлены на источнике теплоснабжения. Принципиальная тепловая схема водогрейной котельной с интегрированной установкой по производству электроэнергии представлена на рис. 1.

Часть теплоносителя на выходе из водогрейного котла I отбирается и, последовательно проходя через испаритель II и подогреватель агента III, обеспечивает получение его в виде пара с параметрами, достаточными для использования в качестве рабочего тела в тепловом двигателе IV, соединенным с электрогенератором.

После завершения процесса расширения отработанный пар поступает в теплообменник-конденсатор V, где теплота конденсации утилизируется потоком холодной воды, идущей в установку ХВО или, как показано на рисунке, через дополнительный подогреватель VI и бак-аккумулятор VII в систему подачи воды на нужды ГВС.

Для практической реализации предлагаемой схемы необходимо рассмотреть несколько моментов.

1. Подобрать низкокипящее вещество (агент), которое по своим термодинамическим характеристикам вписывалось бы в режим работы и параметры котельной.

2. Определить оптимальные параметры режима работы теплосиловой установки и тепло-обменного оборудования.

3. Провести количественную оценку величины максимальной электрической мощности, которую можно получить для конкретных условий рассматриваемой котельной.

При выборе рабочего тела было проведено расчетное исследование цикла Ренкина для следующих агентов: R134, R600a, R113, R114, R600. В результате было установлено, что наибольшая эффективность цикла для его реализации в условиях водогрейной котельной достигается при использовании хладона R600.

Для выбранного таким образом рабочего тела был проведен анализ влияния на вырабатываемую мощность температуры перегрева пара (рис. 2а), давления пара на входе Pн (рис. 2б) и выходе Pк (рис. 2в) двигателя.

Из приведенных графиков следует, что рассматриваемые характеристики практически не зависят от температуры перегрева рабочего тела и улучшаются с возрастанием Pн и уменьшением Pк. В то же время увязка параметров когенерационной установки с режимом работы источника тепла показывает, что увеличение Pн ограничивается необходимостью обеспечить достаточную разность температур в испарителе между испаряющимся рабочим телом и греющим теплоносителем, т.к. температура последнего определяется режимом работы водогрейного котла.

Конечное давление Pк должно выбираться в зависимости от температуры конденсации агента, которая в свою очередь определяется температурным уровнем тепловоспринимающей среды (холодной воды) и необходимым температурным напором в конденсаторе.

Для конкретных расчетов предлагаемой схемы была выбрана котельная с тремя котлами ТВГ-8 с подключенной тепловой нагрузкой по отоплению 14,1 МВт и по горячему водоснабжению 5,6 МВт (зимний режим). В котельной имеется бойлерная установка, обеспечивающая подогрев горячей воды на нужды ГВС. Расчетная температура сетевой воды на выходе из котлов 130 ОC. Суммарная потребляемая мощность - до 230 кВт в отопительный период и до 105 кВт летом.

Значения параметров и расходов теплоносителей в узловых точках схемы, полученные в результате расчетов, приведены в таблице.

Электрическая мощность ЭГК в отопительный период составила 370 кВт, в летний 222 кВт.

При проведении расчетов расход рабочего тепла определялся, исходя из возможности по-

тока холодной воды обеспечить полную конденсацию агента. Различие в получаемой мощности в зимний и летний периоды работы источника тепла связано с уменьшением количества агента, которое может быть сконденсировано, из-за увеличения температуры холодной воды, поступающей в конденсатор (+15 ОC).

Выводы

1. Существует реальная возможность повысить энергоэффективность водогрейных котельных путем организации производства электроэнергии в установках, использующих низко-кипящее рабочее тело.

2. Величина электрической мощности, которая может быть получена при осуществлении когенерации, существенно превышает собственные нужды котельной, что гарантирует ее автономное электроснабжение. При этом отказ от покупной и реализация избыточной электроэнергии должны существенно улучшить экономические показатели источника тепла.

3. Несмотря на невысокие значения КПД цикла, в схеме практически отсутствуют потери подведенной теплоты (кроме потерь в окружаю-

щую среду), что позволяет говорить о высокой энергетической и экономической эффективности предлагаемого решения.

Литература

1. Репин Л.А., Чернин Р.А. Возможности производства электрической энергии в паровых котельных низкого давления //Промышленная энергетика. 1994. №6. С.37-39.

2. Патент 32861 (RU). Тепловая схема водогрейной котельной/Л.А. Репин, А.Л. Репин//2006.

3. Комбинированная геотермальная электростанция с бинарным циклом мощностью 6,5 МВт// Российские энергоэффективные технологии. 2002. № 1.

Продление ресурса и уменьшение расхода природного газа водогрейными котлами ТВГ-КВГ.

Котлы ТВГ (ТВГ-8, ТВГ-8М, ТВГ-4р) и их развитие КВГ (КВГ-7,56, КВГ-4,65) с параметрами 4-10 МВт, воды 150/70 ºС, 8 атм., разработаны Институтом газа НАН Украины и выпускаются Монастырищенским машиностроительным заводом (ВАТ «ТЕКОМ» г. Монастырище Черкасской обл.). Практически все котлы превысили заводской срок эксплуатации (14 лет) и продолжают эксплуатироваться. Котлы ТВГ-КВГ ремонтопригодны и их срок службы ограничивается выходом из строя конвективной поверхности нагрева, изготавливаемой из труб диаметра Ø28×3 мм и необходимостью замены горелочных устройств. После замены этих элементов на усовершенствованные котлы могут работать ещё 10-14 лет с повышенным КПД и уменьшенным расходом природного газа на 4-5%.

Методы модернизации котлов ТВГ-8, ТВГ-8М, ТВГ-4р, КВГ-7,56, КВГ-4,65.

1. Замена газовых горелок на усовершенствованные подовые щелевые горелки 3-го поколения МПИГ-3 с профилированными соплами и дополнительной воздухораспределительной решёткой типа «кольчуга».Преимущества: неизменная геометрия сечения газовых сопел, которые практически не засоряются и соотношение газ/воздух остаётся очень близким к первоначально заданным при режимной наладке, длительный ресурс эксплуатации горелки 10-14 лет, см. рис.

2. Замена конвективных поверхностей нагрева – вместо труб Ø28×3 мм применены трубы Ø32×3 мм или Ø38×3 мм. Преимущества: а) увеличение диаметра трубы уменьшает гидравлическое сопротивление и при плохом качестве воды в системе конвективная поверхность не так быстро выходит со строя; б) за счёт увеличения поверхности нагрева повышается КПД котла.

В результате модернизации котлов ТВГ-8, ТВГ-8М, ТВГ-4р, КВГ-7,56, КВГ-4,65 указанными выше методами можно повысить КПД котлов до 94-95%, снизить расход природного газа и эмиссию монооксида углерода, продлить ресурс котлов на 10-14 лет.

В табл. приведены основные показатели котла ТВГ-8М до модернизации и после (г.Киев, р/к Депутатская, 2, испытание проведено службой наладки «Жилтеплоэнерго Киевэнерго») с заменой горелочных устройств на новые подовые горелки МПИГ-3 и новой конвективной поверхность из труб Ø32×3 мм.

Параметры

ТВГ-8М до модернизации

ТВГ-8М после модернизации

Теплопроизводительность котла, Q к, Гкал/ч

Расход воды через котел, D, т/ч

Гидравлическое сопротивление, ΔP к, кг/см 2

Аэродинамическое сопротивление, ΔН, кг/м 2

Температура уходящих газов,t ух, °С

СО, мг/нм 3

NO х, мг/нм 3

КПД котла брутто, η к, %

Модернизация, например, котла ТВГ-8(ТВГ-8М) обеспечивает экономический эффект на одном котле – 253,8 тыс.грн./год, (экономию газа 172 тыс.м 3 /год или за 15 лет 2,6 млн.м 3) по сравнению с закупкой и установкой нового заводского котла.

Затраты на модернизацию одного котла ТВГ-8(ТВГ-8М) составляют 360 тыс.грн. Окупаемость 1 год и 5 мес.

Институт газа НАН Украины осуществляет передачу технической документации на изготовление горелок и конвективной поверхности нагрева (по договору), шеф-монтаж и пуско-наладку, при необходимости изготавливает самостоятельно конвективную поверхность нагрева и горелки.

Перспективы модернизации отечественного парка паровых и водогрейных котлов.

В Украине преимущественно эксплуатируется парк паровых и водогрейных котлов серий ДКВР, ДЕ, Е, ТВГ, КВГМ, ПТВМ и т.д., обеспечивающих тепловой энергией как производственную сферу, так и жилищно-комунальное хозяйство Украины. Уровень оборудования и автоматики не отвечает действующим нормам по использованию топлива, электроэнергии и экологическим показателям. А тут можно прочитать статьи про малоэтажное строительство на строительном портале. Эту проблему можно решить двумя путями: Полной заменой котлов на новые, современные; Модернизацией существующего парка котлов. Первый путь требует от владельцев теплогенерирующих установок больших капитальных вложений, что на сегодняшний день под силу только некоторым крупным успешно работающим предприятиям. Для других предприятий более реальным является второй путь - модернизация своих теплогенерирующих установок путем замены газогорелочных устройств на импортные аналоги или применение автоматики для котлов на базе импортных комплектующих с использованием штатных горелок или новых горелок серии ГМУ. Импортные горелки фирм "Weishopt", "Ecoflame" установлены на котлах Монастырищенского завода Е2,5-0,9 и Ивано-Франковского завода ВК-22. Эксплуатация этих котлов показала удовлетворительную работу всего оборудования. Примером использования штатной горелки ГМГ-4 на паровом котле ДКВР 6,5/13 является Чижевская бумажная фабрика (ЧПФ). Впервые в практике эксплуатации котлов серии ДКВР газовая горелка ГМГ-4 была переведена в режим полного автоматического розжига и регулирования нагрузки парового котла без постоянного присутствия обслуживающего персонала. Автоматическое регулирование нагрузки по давлению пара в барабане котла позволяет удерживать давление пара на заданном значении ±0,1 кгс/см2 при значительных изменениях расхода пара (до 70% со стороны потребителя). В случае прекращения потребления пара автоматика котла останавливает горелку до момента следующей потребности в паре. Такой режим работы котла с переменной паровой нагрузкой позволяет значительно экономить топливо. Отказ от традиционных методов дроссельного регулирования таких параметров, как уровень воды в верхнем барабане, разрежение в топке котла, давление воздуха перед горелкой и переход на принципиально новый способ регулирования вышеуказанных параметров путем изменения числа оборотов электродвигателей вспомогательного оборудования с помощью частотных преобразователей позволило значительно уменьшить затраты электроэнергии на производство пара. Потребленная электродвигателями вспомогательного оборудования электроэнергия на одну тонну произведенного пара до реконструкции составляла 7,96 квт/т, а после реконструкции составляет 1,98 кВт/т. Таким образом, за срок годичной эксплуатации котла на Чижевской бумажной фабрике, который составляет 8000 часов, экономия электроэнергии достигла 253000 кВт. Средневзвешенный коэффициент полезного действия котла ДКВР 6,5/13 после реконструкции составил 90-90,5% вместо 87,5%. Для современных гидравлических схем водогрейных котельных решена проблема применения погодозависимого регулятора регулирующего температуру теплоносителя в подающей магистрали в зависимости от температуры наружного воздуха при сохранении условия для прямоточных водогрейных котлов tВХ≥70°С. Проблема решена при помощи применения регулируемой гидравлической стрелки. Использование погодозависимого регулятора позволяет экономить топливо до 30%. В настоящее время на все типоразмеры отечественных котлов разработаны схемы по реконструкции с использованием выше перечисленных технологий. Сроки окупаемости затраченных средств на модернизацию паровых или водогрейных котлов составляют 1,0 ÷2,0 года в зависимости от времени эксплуатации в течение года.

Вопрос №19.Автоматизация водогрейных котельных установок

Водогрейные котлы отличаются от паровых наличием водяного контура вместо водо-парового. Это не требует ряда локальных систем регулирования – уровня воды в барабане, температуры пара через пароохладители, продувки котла. С другой стороны появляются новые контуры регулирования в водяном тракте.

Для уменьшения интенсивности наружной коррозии труб водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы при работе на природном газе равна 60 С. Для обеспечения этого необходимо подавать некоторое количество горячей воды, вышедшей из водогрейных котлов, снова на вход в котел для смешения с водой из обратного трубопровода и подпиточной водой. Линию, по которой перекачивают нагретую воду с выхода котла на его вход, так же, как и специальный насос, называют рециркуляционными (рис. 26).

С помощью регулировочного клапана в линии рециркуляции регулируется температура входной воды в котел. Во первых, это происходит на период разогрева котла. В это время t вых <60 0 C, tвх<<60 0 C. Для уменьшения коррозии труб котлов требуется уменьшить время разогрева полным открытием линии рециркуляции, не включая сетевые насосы до момента t вых =60C,. После чего следует включить сетевые насосы, а линию рециркуляции постепенно закрывать, обеспечивая t вх =60 0 C. При t обр > 60 0 C линия рециркуляции становится не нужна – регулировочный клапан закрыт. В осенне-весенний период, когда t обр < 60 0 C. линия рециркуляции становится нужна и в установившемся режиме работы,

Для обеспечения расчетной температуры воды в прямом трубопроводе тепловой сети при качественном регулировании подмешивается сетевая вода из обратного трубопровода. Часть воды из обратной линии, минуя котлы, подают по линии перепуска через регулировочный клапан в подающую магистраль, где она, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в прямом трубопроводе.

Наличие линий рециркуляции и перепуска воды приводит к специфичным режимам работы водогрейных котлов. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. С другой стороны, при качественном регулировании теплопотребления в стационарном режиме требуется постоянство расхода теплоносителя в тепловой сети, постоянство разницы давлений в прямом и обратном трубопроводах у потребителя для реализации проектных гидравлических настроек теплопотребления. Ручная настройка операторами вышеперечисленных контуров регулирования с помощью обычных задвижек без средств автоматизации, регуляторов не приводят к экономически оправданным результатам.

В водяных котельных, предназначенных для получения горячей воды (не более 150 °С) роль питательных насосов для подачи воды в котел выполняют сетевые насосы. Подпиточные насосы обеспечивают компенсацию невозврата сетевой воды.

В системах отопления все более распространяются водогрейные блочные котельные. Для осуществления безнакипного режима работы устанавливают дозаторы (добавки для умягчения воды). Применение закрытой системы горячего водоснабжения резко уменьшает потребное количество деаэрированной воды. Тепловые схемы котельных для закрытых систем теплоснабжения проще, чем для открытых не только конструктивно. В них уменьшается мощность оборудования химводоподготовки и ниже требования к качеству подпиточной воды.

Что такое рециркуляция? Какие плюсы и минусы данной системы? Как организовать правильное и комфортное водоснабжение дома? На эти и другие вопросы ответит статья нашего сайта, посвященная функционалу бойлеров – системе рециркуляции воды

Для комфортного пользования горячей водой, при проектировании современных систем, принято использовать накопительные водонагреватели. Они дают возможность всегда иметь необходимый запас горячей воды для нужд жильцов. Как правильно рассчитать необходимый объем водонагревателя описано в статье нашего блога.

Бойлер косвенного нагрева.
Крайне выгодно использовать для нагрева горячей воды бойлер косвенного нагрева, который дает экономические и конструктивные преимущества по сравнению с обычным электрическим водонагревателем. В бойлер косвенного нагрева, помимо стандартного электрического ТЭНа встроен теплообменник (или несколько теплообменников), по которому можно пустить теплоноситель из альтернативной системы (отопительного котла, солнечного коллектора, теплового насоса и пр.). Это, в первую очередь, дает экономические преимущества нагрева горячей воды. В период отопительного сезона, бойлер будет отлично нагреваться от системы отопления дома, не включая электрический ТЭН. А при использовании бойлера с солнечным коллектором, вообще можно получить бесплатную систему нагрева воды от солнца круглый год.

Что такое рециркуляция.

Некоторые бойлеры косвенного нагрева оснащены дополнительным патрубком рециркуляции, который можно использовать в системе горячего водоснабжения для создания дополнительного комфорта. При закладке труб горячей воды к смесителю, необходимо заложить еще одну, обратную трубу для рециркуляции воды. Таким образом, по трубам горячего водоснабжения будет всегда циркулировать горячая вода и при открытии крана, моментально, водой можно пользоваться.

Рециркуляция, по сути, это движение горячей воды по замкнутому трубному кольцу, с возможностью ее отбора из этого кольца.

Где стоит закладывать рециркуляцию воды из бойлера.
В первую очередь, рециркуляция применяется в местах, где точка водоразбора находится на большом удалении от бойлера – нагревателя. Пока вы не пользуетесь горячей водой, она в трубах остывает и, после открытия крана, необходимо спускать охладившуюся воду какой-то промежуток времени. Рециркуляция полностью решает данную проблему. Если нет желания все время спускать воду из крана, то следует выбрать систему с рециркуляцией горячей воды. Подобная система имеет трубопроводы подачи и обратки, но система очень удобная и комфортная.
Дополнительно, на систему рециркуляции горячей воды можно подключить водяной полотенцесушитель. В данном случае, полотенцесушитель будет теплым круглый год, т.к. запитан будет не от отопления, а от горячего водоснабжения дома

Недостатки системы рециркуляции.
Основной недостаток системы рециркуляции – сложность монтажа из-за необходимости прокладки дополнительной трубы. Данные работы можно выполнить только при строительстве дома или капитальном ремонте.
Кроме этого, для работы системы рециркуляции понадобится циркуляционный насос и дополнительные материалы для обвязки. Для движения воды от бойлера по трубам и в обратную сторону применяют циркуляционный насос ГВС, запрещается применять насос для отопительной системы. Насос постоянно подключен к сети и расходует мало электроэнергии, примерно 25-80 Ватт в час (в зависимости от модели и производительности насоса).


Стоит отметить, что при работе рециркуляции горячей воды, стоимость нагрева воды увеличится, ведь она будет постоянно циркулировать, отдавая тепло стенам, полотенцесушителю и пр. и воду придётся греть чаще, чем в обычном бойлере замкнутого цикла нагрева. За комфорт приходится платить. Для достижения максимального уровня экономии энергии обратная линия, как и линия подачи воды, должны быть хорошо теплоизолированы для уменьшения потерь тепла, иначе вместо системы водоснабжения можно получить дополнительную систему обогрева стен с постоянно работающим циркуляционным насосом.
Не следует пренебрегать и установкой дополнительной группы безопасности – установить расширительный бак, а заодно и автоматический воздухоотводчик, чтобы исключить попадание воздуха в насос. При желании, можно установить также и предохранительный клапан, для защиты водонагревателя от избыточного давления, вызванного расширением воды при нагреве. При достижении критического давления предохранительный клапан выпустит «лишнюю» воду. Но в большинстве случаев достаточно установить лишь расширительный бак. Он компенсирует давление в системе горячего водоснабжения, отбирая излишки воды, тем самым уменьшая давление при нагреве. Давление воздуха в расширительном баке не должно превышать давление предохранительного клапана, иначе действие расширительного бака бесполезны. А минимальное давление воздуха должно быть не ниже минимального давления в системе водоснабжения.

Для жаротрубных водогрейных котлов Колви завод-изготовитель рекомендует установку рециркуляционной линии, которая будет обеспечивать постоянное поддержание температуры теплоносителя на входе в котел на уровне 55-60 градусов. Рециркуляция необходима для противодействия возможному возникновению конденсации на поверхностях котла, что особенно возможно при работе котла в режиме 50% и ниже от номинальной мощности.

Технической документацией на жаротрубные котлы не рекомендуется работа котла в режиме мощности ниже 40% от номинала, поскольку тут возникает следующее неблагоприятное явление: относительно низкая температура дымовых газов усугубляется низкими значениями температуры теплоносителя на возвратной линии, что приводит к образованию конденсата на стальных конструкциях котла с известными последствиями. Потому необходимо обеспечивать на "обратке" котла указанные выше 55-60 градусов, чего вполне достаточно для защиты от "точки росы", которую дымовые газы могут достигнуть.

Для организации подмеса горячего теплоносителя в "обратную" линию жаротрубного котла есть 2 основных варианта:

  • Установка подмешивающего трехходового клапана.
  • Установка циркуляционного насоса (насоса рециркуляции).

На практике чаще всего используется именно 2-й вариант ― установка рециркуляционного насоса. Такой насос устанавливается на перемычке между подающей и возвратной линией, в непосредственной близости от котла. Обязательным условием является удобство доступа обслуживающего персонала котельной к насосу и прочим компонентам рециркуляционной линии.

Ниже приведем типичную схему линии рециркуляции:

На приведенной схеме указана типичная схема рециркуляции газового котла (1), расположенная перемычкой между подающей Т1 (2) и возвратной Т2 (3) линиями. Непосредственно насос рециркуляции (4) с ответными фланцами должен устанавливаться вместе с запорной арматурой (6) на входе и выходе теплоносителя для возможности демонтажа насоса при необходимости. Так же, перед и после насоса желательна установка манометров (5) для контроля давления теплоносителя и визуального определения значений перепадов напора. После напорного патрубка насоса необходима установка обратного клапана (7) для обеспечения корректности направления взаимной циркуляции воды на возвратной и рециркуляционной линиях.

Методика расчета необходимых параметров насоса рециркуляции :

Расчетными параметрами для данных насосов являются:

  • Необходимый расход теплоносителя.
  • Расчетный напор насоса, позволяющий преодолевать гидравлическое сопротивление всех элементов: котла, труб, запорной арматуры. При этом должен обеспечиваться необходимый расход теплоносителя (см. выше).

Расход теплоносителя для рециркуляционной линии определяется посредством тепловой мощности котла, расхода теплоносителя через котел и температурного режима работы котла. Расчетным значением расхода рециркуляционного насоса является 1/3 от расхода теплоносителя через котел. Ниже приведем пример расчета:

Имеется газовый жаротрубный котел Колви 250 с тепловой мощностью 291 квт. КПД котла 92%. Его температурный режим составляет 95/70 градусов.

1. Определение теплопродуктивности котла: 291х0,92=268 квт

2. Определение температурного градиента: 95-70=25 градусов.

3. Определение расхода воды через котел: (0,86х268)/25 = 9,22 м.куб. в час.

4. Определение расхода воды для рециркуляционного насоса: 9,22/3 = 3,08 м.куб. в час.

Расчетный напор насоса рециркуляции, как было приведено выше, определяется местными сопротивлениями элементов котельной. Как показывает практика, допустимыми являются параметры напора 2-4 метра вод. ст. (0,2-0,4 бар).

Как правило, принцип работы отопительной системы в небольшом здании происходит за счет естественной циркуляции теплоносителя по трубам. Для зданий, площадью в сотни квадратов этот принцип отопления является неэффективным.

Просто, при естественном передвижении теплоносителя давление, которое образуется в трубопроводе, не более 0,7 мПа, а это очень мало для многоэтажных и больших зданий.

Повысить силу и скорость циркуляции в системе можно несколькими способами: установить трубопровод большего диаметра или установить рециркуляционный насос для отопления. Первый способ дорогой по цене, так как стоимость труб очень высокая. Для отопления зданий площадью более 100 кв.м лучше всего установить циркуляционные насосы отопления.

Устройство циркуляционного насоса довольно похоже на устройство дренажного насоса:

  • ротор;
  • корпус;
  • электродвигатель;
  • вал ротора.

Основной функцией циркуляционных устройств является преодоление сопротивления в трубопроводе.

Виды циркуляционных насосов

Есть два основных вида рециркуляционных насосов – это «мокрый» и«сухой».

«Сухой» вид

Здесь не происходит непосредственного контакта ротора с водой, потому что он защищен уплотнителем из колец. Для изготовления уплотнителей может использоваться керамика, сталь или угольный агломерат, алюминий – это зависит от вида теплоносителя в доме.

Запуск устройства инициирует перемещение колец касательно друг друга. Кольца имеют идеально гладкие поверхности , которыми они касаются между собой и образуют тончайший слой водной пленки. Пружины создают прижим колец навстречу друг другу, поэтому, по мере износа детали без вмешательства человека подгоняются между собой самостоятельно.

Время эксплуатации колец примерно 3 года. КПД «сухих» циркуляционных насосов составляет 80%. Особенность эксплуатации этого устройства – сильный шум, потому для этого нужно подыскивать специальное помещение.

При использовании насоса с сухим видом ротора, который имеет торцевые скользящие кольца, нужно контролировать наличие взвеси в перекачиваемом теплоносителе и общий уровень загрязненности помещения. Просто специфика эксплуатации «сухого» типа состоит в образовании завихрений воздуха, а они, в свою очередь, притягивают пыль. Пыль, которая попала в теплоноситель, деформирует поверхность колец, нарушая герметичность. Специфика работы этих насосов – постепенная деформация уплотнителей, потому им важно наличие водяного слоя в рабочих поверхностях, он играет в качестве смазки.

Устройства «сухого» типа бывают нескольких видов и имеют свои особенности в конструкции. Горизонтальными или консольными называются устройства, в которых всасывающая трубка находится с торца «улитки», нагнетающая - зафиксирована радиально на корпусе, двигатель расположен горизонтально.

Вертикальные циркуляционные насосы имеют патрубки одинакового размера , которые устанавливаются на одной линии, а двигатель находится вертикально.

«Мокрый» вид

В насосах «мокрого» типа, движущийся рабочий элемент крыльчатка опущена в сам теплоноситель, который выполняет параллельно роль охладителя и смазки электродвигателя. Электрическая часть двигателя защищена от проникновения воды герметичным стаканом из нержавейки, находящимся между статором и ротором.

Как правило, материалом для ротора является керамика, для подшипников используют графит или опять же керамику. Корпус циркуляционного насоса может быть выполнен из бронзы, латуни или чугуна. К специфике работы устройств «мокрого» типа относится небольшой уровень шума во время работы, продолжительное время эксплуатации без технического обслуживания, простота и легкость ремонта и настройки.

Уровень КПД этих циркуляционных устройств меньше, в отличие от «сухих» практически на 25%, то есть 60%. Эта низкая степень производительности объясняется невозможностью герметизации стальной гильзы, которая отделяет теплоноситель и статор, при большом размере ротора. Но для бытового использования дома, где не нужна циркуляция воды в трубопроводах большой длины, можно использовать этот насос для отопления , цена их при этом намного дешевле.

Конструкция «мокрых» циркуляционных насосов состоит из:

  • электродвигателя со статором;
  • картуши, где в составе находится ротор и вал с подшипниками;
  • корпуса оборудования;
  • рабочего колеса;
  • корпуса с клеммниками.

Удобство конструкции заключается в том, что в любое время можно поменять сломанную часть агрегата, а из цельного блока картуша всегда легко можно стравить накопившийся воздух.

В корпус «мокрых» циркуляционных насосов изготовители могут вставлять однофазные или трехфазные моторы, соответственно, и цена отличается. Для крепежа насоса к трубопроводу системы отопления предусмотрено фланцевое либо резьбовое соединение – вид крепежа зависит от производительности и мощности устройства.

Как выбрать отопительный циркуляционный насос?

Прежде чем сделать выбор в пользу определенного вида циркуляционного насоса для системы отопления , нужно обратить внимание на степень производительности. Причем способ расчета довольно простой : производительность котла уравнять с количеством воды, которая проходит за минуту. К примеру, при мощности котла в 40 кВт через него пройдет 40 литров воды.

Затем нужно выяснить, какой будет расход теплоносителя на конкретном участке циркуляции. Для чего необходимо использовать данные о производительности отопительных батарей, которые известны, и уровнять. Для определения расчетов принимается приблизительная скорость теплоносителя в трубопроводе, она примерно равна 1,5 м/сек.

Рассчитывая производительность насоса для системы отопления дома, предположим, что на 15 метровом участке трубопровода нужно сделать давление с показателем 0,8 метра. Соответственно для нормального обогрева 150 метров труб нужен напор в 8 м. Теперь нужно подобрать именно эту модель циркуляционного насоса , технологические возможности которого смогут решать эти условия.

Трубы с маленьким диаметром будут иметь повышенное гидравлическое сопротивление, а, соответственно, необходима установка насоса с более высокой производительностью. И, наоборот – для труб большого сечения сильно мощное оборудование не нужно.

Цена вопроса

Приблизительная цена циркуляционного насоса (с производительностью 35 Вт, напором 3 м и циркуляцией воды 3 куб.м./час) примерно 4500 – 4900 руб. Наилучшими изготовителями качественных устройств являются итальянские, немецкие и датские производители. Отечественные производители сосредоточены на изготовлении устройств производственного назначения.

Считать то, что удастся выбрать насос, который будет соответствовать на все 100% вашим потребностям, не нужно. В любой системе отопления есть свои особенности и нюансы, а оборудование сориентировано на средние параметры и показатели работы. Оборудование с излишней производительностью создает сильный шум , а с недостаточной – не создаст необходимый напор воды в системе. Поэтому лучше всего купить модель с мощностью, чуть выше необходимой на 8-12%. Нужно выбирать модель, где есть настраиваемые режимы, они дают возможность эксплуатировать устройство максимально эффективно.

Подготовка месторасположения и установка

Оборудование «мокрого» типа можно монтировать и на подающем, и на возвратном участке труб. Для обеспечения достаточной циркуляции воды по трубопроводу, нужно учитывать важный фактор: любая точка, которая находится в местах всасывания, обязана иметь избыточный гидростатический напор.

Контролировать данный процесс можно таким образом:

  • поставить расширительный резервуар выше наиболее высокой точки отопительной системы на 90 см. Данный вариант – наиболее удобный и простой , тем более в случае дополнительного оборудования системы отопления циркулярным насосом. Нужно только необходимая высота чердака и теплоизоляция расширительного резервуара;
  • установить резервуар в верхней точке отопительной системы таким образом, чтобы верхняя часть труб была в месте нагнетания насоса. Данный вариант подходит для современных систем отопления , в которых изначально сделан наклон трубопровода к котлу. Способ работы состоит в том, чтобы пузырьки воздуха передвигались в водяном потоке под напором насоса;
  • определить самую высшую точку системы на наиболее удаленном стояке. Но тут есть некоторый нюанс: нужно переделывать трубопровод, а это довольно сложное мероприятие, да и цена будет соответствующей;
  • перенести расширительную резервуар и часть трубопровода в место всасывания насоса, перед патрубком. Эта реконструкция будет наиболее лучшей для работы принудительной циркуляции воды;
  • установка насоса в подающей части трубопровода, непосредственно за точкой входа расширительного резервуара. Но этот вариант подходит не для всех моделей устройств, так как в этом месте температура будет довольно большой. Способ подходит для тех насосов, которые смогут выдерживать эти условия эксплуатации.

Для установки насоса необходимо учитывать его диаметр резьбы и купить байпас, обратный клапан, фильтра грубой чистки, гаечный ключ №19 и 36 мм. На основной трубе, между выходом и входом врезаемой перемычки, монтируется запорный клапан необходимого размера.

Роль байпаса состоит в переключении системы отопления из принудительного режима в естественный в случае поломки насоса, отключении электроэнергии. Диаметр байпаса должен совпадать с диаметром стояка, в который устанавливается.

Устройства на перемычке обязаны быть установлены в таком порядке: сперва врезается фильтр очистки, затем идет клапан и в концес с насос. Входы байпаса в стояк происходят с помощью запорных клапанов, которые перекрывают систему в случае выхода из строя.

Циркуляционный насоделает работу отопительной системы наиболее эффективной. Но, делая выбор насоса, нужно быть очень внимательным, учитывая цену отопительного оборудования и стоимость насоса – так как от этого элемента будет зависеть комфорт в вашем доме.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии