Теплообменник кожухотрубный (кожухотрубчатый). Принцип работы кожухотрубчатого теплообменника, его преимущества и недостатки

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Сейчас мы с вами рассмотрим технические характеристики и принцип работы кожухотрубных теплообенников, а так же расчёт их параметров и особенности выбора при покупке.

Теплообменники обеспечивают процесс обмена теплом между жидкостями, каждая из которых имеет разную температуру. В настоящее время кожухотрубный теплообменник с большим успехом нашел свое применение в различных отраслях промышленности: химической, нефтяной, газовой. При их изготовлении не возникает сложностей, они надежны и имеют возможность развивать большую поверхность теплообмена в одном аппарате.

Получили такое название благодаря наличию кожуха, скрывающего внутренние трубы.

Устройство и принцип действия

Строение: конструкция из пучков труб, закрепленных в трубных досках (решетках) крышек, кожухов и опор.

Принцип, по которому осуществляет свою деятельность кожухотрубчатый теплообменник довольно прост. Он заключается в движении холодного и горячего теплоносителей по разным каналам. Теплообмен происходит именно между стенками этих каналов.

Принцип работы кожухотрубчатого теплообменника

Преимущества и недостатки

Сегодня кожухотрубные теплообменники пользуются спросом у потребителей и не теряют своих позиций на рынке. Это обусловлено немалым количеством достоинств, которыми обладают эти устройства:

  1. Высокая стойкость к . Это помогает им легко переносить перепады давления и выдерживать серьезные нагрузки.
  2. Не нуждаются в чистой среде. Это значит, что они могут работать с некачественной жидкостью, не прошедшей предварительной очистки, в отличие от множества других видов теплообменников, которые способны работать исключительно в не загрязненных средах.
  3. Высокая эффективность.
  4. Износостойкость.
  5. Долговечность. При должном уходе кожухотрубчатые агрегаты будут работать на протяжении многих лет.
  6. Безопасность использования.
  7. Ремонтопригодность.
  8. Работа в агрессивной среде.

Учитывая вышеизложенные преимущества, можно утверждать об их надежности, высокой эффективности и долговечности.


Кожухотрубные теплообменники в промышленности

Несмотря на большое количество отмеченных преимуществ кожухотрубных теплообменников, данные устройства имеют и ряд недостатков:

  • габаритность и значительный вес: для их размещения необходимо помещение значительных размеров, что не всегда является возможным;
  • высокая металлоемкость : это является основной причиной их высокой цены.

Виды и типы кожухотрубных теплообменников

Классифицируются кожухотрубные теплообменники в зависимости от того, в каком направлении двигается теплоноситель .

Выделяют следующие виды по этому критерию:

  • прямоточный;
  • противоточный;
  • перекресточный.

Количество трубок, находящихся в сердце кожуха, напрямую влияет на то, с какой скоростью будет двигаться вещество, а скорость оказывает непосредственное влияние на коэффициент теплопередачи .

Учитывая данные характеристики, кожухотрубные теплообменники бывают следующих типов:

  • c температурным кожуховым компенсатором;
  • c неподвижными трубками;
  • c плавающей головкой;
  • c U-образными трубками.

Модель с U-образными трубками состоит из одной трубной решетки, в которую и вварены данные элементы. Это позволяет округленной части трубки беспрепятственно опираться на поворотные щитки в корпусе, при этом они имеют возможность линейно расширяться, что позволяет их использовать в больших диапазонах температур. Для чистки U-трубок требуется вынимать всю секцию с ними и использовать специальные химические средства.

Расчет параметров

Долгое время кожухотрубные теплообменники считались самыми компактными среди существующих. Однако появились , которые в три раза компактнее кожухотрубных. К тому же, особенности конструкции подобного теплообменника приводят к возникновению температурных напряжений из-за различия температур между трубами и кожухом. Поэтому при выборе подобного агрегата очень важно сделать его грамотный расчет.

Формула расчёта площади кожухотрубчатого теплообменника

F — площадь поверхности теплообмена;
t ср – средняя разность температур между теплоносителями ;
К – коэффициент теплопередачи;
Q — количество теплоты.

Для проведения теплового расчета кожухотрубного теплообменника необходимы следующие показатели:

  • максимальный расход греющей воды;
  • физические характеристики теплоносителя : вязкость, плотность, теплопроводность, конечная температура, теплоемкость воды при средней температуре.

При осуществлении заказа кожухотрубчатого теплообменника важно знать, какими техническими характеристиками он обладает:

  • давление в трубах и кожухе;
  • диаметр кожуха;
  • исполнение (горизонтальное\вертикальное);
  • тип трубных решеток (подвижные\неподвижные);
  • климатическое исполнение.

Самостоятельно сделать грамотный расчет достаточно сложно. Для этого необходимы знания и глубокое понимание всей сути процесса его работы, поэтому лучшим способом станет обращение к специалистам.

Эксплуатация трубчатого теплообменника

Кожухотрубный теплообменник является устройством, которое характеризуется высокой продолжительностью срока службы и хорошими параметрами эксплуатации. Однако, как и любому другому устройству, для качественной и долговременной работы ему необходимо плановое обслуживание. Поскольку в большинстве случаев кожухотрубные теплообменники работают с жидкостью, которая не прошла предварительную очистку, трубки агрегата рано или поздно засоряются и на них образуется осадок и создается препятствие для свободного протекания рабочей жидкости.

Чтобы эффективность работы оборудования не снижалась и не произошла поломка кожухотрубного агрегата, следует систематически проводить его чистку и промывку.

Благодаря этому он сможет осуществлять качественную работу на протяжении длительного времени. По истечению срока действия прибора, рекомендуется осуществить замену его на новый.

Если возникла потребность в ремонте трубчатого теплообменника, то первоначально необходимо произвести диагностику устройства. Это позволит выявить основные проблемы и определит объем предстоящей работы. Самая слабая его часть — это трубки, и, чаще всего, основным поводом ремонта является повреждение трубчатки.

Для диагностики кожухотрубного теплообменника используется метод гидравлических испытаний.

В сложившейся ситуации необходимо произвести замену трубок, а это трудоемкий процесс. Необходимо заглушить вышедшие из строя элементы, в свою очередь это сокращает площадь теплообменной поверхности. Осуществляя ремонтные работы, обязательно нужно учитывать тот факт, что любое, даже малейшее вмешательство, может стать причиной уменьшения теплообмена.

Теперь вы знаете, как устроен кожухотрубный теплообменник, какие есть у него разновидности и особенности.

Смонтированная и готовая к работе пластинчатая теплообменная установка отличается небольшими габаритами и высоким уровнем производительности. Так, удельная рабочая поверхность такого аппарата может достигать 1,500 м 2 /м 3 .Конструкция таких аппаратов включает набор гофрированных пластин, которые отделяются друг от друга прокладками. Прокладки образуют герметичные каналы. Среда, отдающая тепло течет в пространстве между полостями, а внутри полостей находится среда, которая поглощает тепло или наоборот. Пластины монтируются на штанговой раме и расположены плотно относительно друг друга.

Каждая пластина оснащена следующий набор прокладок:

  • прокладка по периметру, которая ограничивает канал для теплоносителя и два отверстия его входа и выхода;
  • две малые прокладки, которые изолируют два других угловых отверстия для прохода второго теплового носителя.

Таким образом, конструкция имеет четыре раздельных канала для входа и выхода двух сред, участвующих в теплообменных процессах. Данный тип аппаратов способен распределять потоки по всем каналам параллельно или последовательно. Так, при необходимости, каждый поток может проходить по всем каналам или определенным группам.

К достоинствам данного типа аппаратов принято относить интенсивность теплообменного процесса, компактность, а также возможность полного разбора агрегата с целью очистки. К недостаткам причисляют необходимость скрупулезной сборки для сохранения герметичности (как результат большого количества каналов). Кроме того, минусами такой конструкции является склонность к коррозии материалов, из которых изготовлены прокладки и ограниченная тепловая стойкость.

В случаях, когда возможно загрязнение поверхности нагрева одним из теплоносителей, используют агрегаты, конструкция которых состоит из попарно сваренных пластин. Если загрязнение нагреваемой поверхности исключено со стороны обоих теплоносителей, применяются сварные неразборные теплообменные аппараты (как, например, аппарат с волнообразными каналами и перекрестным движением теплоносителей).

Принцип действия пластинчатого теплообменника

Пластинчатый теплообменник для дизельного топлива

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 37350,00 20000,00
Температура на входе (°C) 45,00 24,00
Температура на выходе (°C) 25,00 42,69
Потеря давления (bar) 0,50 0,10
Теплообмен (кВт) 434
Термодинамические свойства: Дизельное топливо Вода
Удельный вес (кг/м³) 826,00 994,24
2,09 4,18
Теплопроводимость (Вт/м*K) 0,14 0,62
Средняя вязкость (мПа*с) 2,90 0,75
Вязкость у стенки (мПа*с) 3,70 0,72
Подводящий патрубок B4 F3
Отводящий патрубок F4 B3
Исполнение рамы / пластин:
2 х 68 + 0 х 0
Расположение пластин (проход*канал) 1 х 67 + 1 х 68
Количество пластин 272
324,00
Материал пластин 0.5 мм AL-6XN
NITRIL / 140
150,00
16,00 / 22,88 PED 97/23/EC, Kat II, Modul Al
16,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
DN 150 Фланец St.37PN16
DN 150 Фланец St.37PN16
Объем жидкости (л) 867
Длина рамы (мм) 2110
Макс.число пластин 293

Пластинчатый теплообменник для сырой нефти

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 8120,69 420000,00
Температура на входе (°C) 125,00 55,00
Температура на выходе (°C) 69,80 75,00
Потеря давления (bar) 53,18 1,13
Теплообмен (кВт) 4930
Термодинамические свойства: Пар Сырая нефть
Удельный вес (кг/м³) 825,00
Удельная теплоемкость (кДж/кг*K) 2,11
Теплопроводимость (Вт/м*K) 0,13
Средняя вязкость (мПа*с) 20,94
Вязкость у стенки (мПа*с) 4,57
Степень загрязнения (м²*K/кВт) 0,1743
Подводящий патрубок F1 F3
Отводящий патрубок F4 F2
Исполнение рамы / пластин:
Расположение пластин (проход*канал) 1 х 67 + 0 х 0
Расположение пластин (проход*канал) 2 х 68 + 0 х 0
Количество пластин 136
Фактическая поверхность нагрева (м²) 91.12
Материал пластин 0.6 мм AL-6XN
Материал прокладки / Макс. темп. (°C) VITON / 160
Макс. расчетная температура (C) 150,00
Макс. рабочее давление /испыт. (bar) 16,00 / 22,88 PED 97/23/EC, Kat III, Modul В+C
Макс. дифференциальное давление (bar) 16,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
Присоединения на горячей стороне DN 200 Фланец St.37PN16
Присоединения на холодной стороне DN 200 Фланец St.37PN16
Объем жидкости (л) 229
Длина рамы (мм) 1077
Макс.число пластин 136

Пластинчатый теплообменник

Наименование Горячая сторона Холодная сторона Расход (кг/ч) 16000,00 21445,63 Температура на входе (°C) 95,00 25,00 Температура на выходе (°C) 40,00 45,00 Потеря давления (bar) 0,05 0,08 Теплообмен (кВт) 498 Термодинамические свойства: Азеотропная смесь Вода Удельный вес (кг/м³) 961,89 993,72 Удельная теплоемкость (кДж/кг*K) 2,04 4,18 Теплопроводимость (Вт/м*K) 0,66 0,62 Средняя вязкость (мПа*с) 0,30 0,72 Вязкость у стенки (мПа*с) 0,76 0,44 Степень загрязнения (м²*K/кВт) Подводящий патрубок F1 F3 Отводящий патрубок F4 F2 Исполнение рамы / пластин: Расположение пластин (проход*канал) 1 х 29 + 0 х 0 Расположение пластин (проход*канал) 1 х 29 + 0 х 0 Количество пластин 59 Фактическая поверхность нагрева (м²) 5,86 Материал пластин 0.5 мм AL-6XN Материал прокладки / Макс. темп. (°C) VITON / 140 Макс. расчетная температура (C) 150,00 Макс. рабочее давление /испыт. (bar) 10,00 / 14,30 PED 97/23/EC, Kat II, Modul Аl Макс. дифференциальное давление (bar) 10,00 Тип рамы / Покрытие IG No 1 / Категория C2 RAL5010 Присоединения на горячей стороне DN 65 Фланец St.37PN16 Присоединения на холодной стороне DN 65 Фланец St.37PN16 Объем жидкости (л) 17 Длина рамы (мм) 438 Макс.число пластин 58

Пластинчатый теплообменник для пропана

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 30000,00 139200,00
Температура на входе (°C) 85,00 25,00
Температура на выходе (°C) 30,00 45,00
Потеря давления (bar) 0,10 0,07
Теплообмен (кВт) 3211
Термодинамические свойства: Пропан Вода
Удельный вес (кг/м³) 350,70 993,72
Удельная теплоемкость (кДж/кг*K) 3,45 4,18
Теплопроводимость (Вт/м*K) 0,07 0,62
Средняя вязкость (мПа*с) 0,05 0,72
Вязкость у стенки (мПа*с) 0,07 0,51
Степень загрязнения (м²*K/кВт)
Подводящий патрубок F1 F3
Отводящий патрубок F4 F2
Исполнение рамы / пластин:
Расположение пластин (проход*канал) 1 х 101 + 0 х 0
Расположение пластин (проход*канал) 1 х 102 + 0 х 0
Количество пластин 210
Фактическая поверхность нагрева (м²) 131,10
Материал пластин 0.6 мм AL-6XN
Материал прокладки / Макс. темп. (°C) NITRIL / 140
Макс. расчетная температура (C) 150,00
Макс. рабочее давление /испыт. (bar) 20,00 / 28,60 PED 97/23/EC, Kat IV, Modul G
Макс. дифференциальное давление (bar) 20,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
Присоединения на горячей стороне DN 200 Фланец AISI 316 PN25 DIN2512
Присоединения на холодной стороне DN 200 Фланец AISI 316 PN16
Объем жидкости (л) 280
Длина рамы (мм) 2107
Макс.число пластин 245

Описание пластинчато-ребристых теплообменных аппаратов

Удельная рабочая поверхность данного аппарата может достигать 2,000 м 2 /м 3. К плюсам таких конструкций принято относить:

  • возможность теплообмена между тремя и более теплоносителями;
  • небольшой вес и объем.

Конструктивно пластинчато-ребристые теплообменники состоят из тонких пластин, между которыми находятся гофрированные листы. Данные листы припаяны к каждой пластине. Таким образом, теплоноситель разбивается на мелкие потоки. Аппарат может состоять из любого числа пластин. Теплоносители могут перемещаться:

  • прямотоком;
  • перекрестным потоком.

Существуют следующие типы ребер:

  • гофрированные (рифленые), образующие волнистую линию вдоль потока;
  • прерывистые ребра, т.е. смещенные относительно друг друга;
  • чешуйчатые ребра, т.е. имеющие прорези, которые отогнуты в одну или разные стороны;
  • шиповидные, т.е. изготовленные из проволоки, которые могут располагаться в шахматном или коридорном порядке.

Пластинчато-ребристые теплообменные аппараты применяют как регенеративные теплообменники.

Блочные графитовые теплообменные аппараты: описание и применение

Теплообменные аппараты , выполненные из графита, характеризуются следующими качествами:

  • высокой стойкостью к коррозии;
  • высоким уровнем проводимости тепла (может достигать до 100 Вт/(м·К)

Благодаря указанным качествам, теплообменники данного типа широко используются в химической промышленности. Наибольшее распространение получили блочные графитовые аппараты, основным элементом которых является графитовый блок в форме параллелепипеда. В блоке есть непересекающиеся отверстия (вертикальные и горизонтальные), которые предназначаются для движения теплоносителей. Конструкция блочного графитового теплообменника может включать в себя один и более блоков. По горизонтальным отверстиям в блоке осуществляется двухходовое движение теплоносителя, которое возможно благодаря боковым металлическим плитам. Теплоноситель, который перемещается по вертикальным отверстиям, совершает один или два хода, что определяется конструкцией крышек (верхней и нижней). В теплообменниках с увеличенными боковыми гранями, теплоноситель, двигающийся вертикально может делать два или четыре хода.

Графитовый теплообменник, пропитанный фенолоальдегидным полимером, кольцевого блочного типа, с поверхностью теплообмена 320 м 2

Графитовый теплообменник кольцевого блочного типа для H2SO4

Технические характеристики:

Охладитель
Наименование Размерность Горячая сторона Холодная сторона
Вход Выход Вход Выход
Среда H2SO4 (94%) Вода
Расход м³/ч 500 552,3
Рабочая тепература °C 70 50 28 40
Физ. Свойства
Плотность г/cм³ 1,7817 1,8011 1
Удельная теплоёмкость ккал/кг °C 0,376 0,367 1
Вязкость 5 11,3 0,73
Теплопроводность ккал/чм°C 0,3014 0,295 0,53
Поглощённое тепло ккал/ч 6628180
Исправленная средняя разность температур °C 25,8
Перепад давления (допуст./расч.) кПа 100/65 100/45
Коэффициент теплопередачи ккал/чм²°C 802,8
Коэффициент загрязнения ккал/чм²°C 5000 2500
Расчётные условия
Расчётное давление бар 5 5
Рсчётная температура °C 100 50
Спецификация / материалы
Требуемая площадь поверхности теплопередачи м² 320
Прокладки, материал тефлон (фторопласт)
Блоки, материал Графит, пропитка фенольно-альдегидным полимером
Размеры (диаметр×длина) мм 1400*5590
Внутренний диаметр канала, осевой / радиальный 20мм/14мм
Кол-во проходов 1 1
Кол-во блоков 14

Графитовый теплообменник для суспензии гидрата двуокиси титана и раствора серной кислоты

Технические характеристики:

Наименование Размерность Горячая сторона Холодная сторона
Вход Выход Вход Выход
Среда Суспензия гидрата двуокиси Титана и 20% H2SO4 Вода
Расход м³/ч 40 95
Рабочая тепература °C 90 70 27 37
Рабочее давление бар 3 3
Поверхность теплообмена м² 56,9
Физические свойства
Плотность кг/м³ 1400 996
Удельная теплоёмкость кДж/кг∙°C 3,55 4,18
Удельная теплопроводность Вт/м∙К 0,38 0,682
Динамическая вязкость сП 2 0,28
Термостойкость к загрязнению Вт/м²∙К 5000 5000
Перепад давления(рассчитанный) бар 0,3 0,35
Теплообмен кВт 1100
Средняя разница температур оС 47,8
Коэффициент теплопередачи Вт/м²∙К 490
Расчетные условия
Расчётное давление бар 5 5
Рсчётная температура °C 150 150
Материалы
Прокладки PTFE
Кожух Углеродистая сталь
Блоки Графит, пропитанный фенольной смолой

Теплопроводы для химической промышленности

Теплопровод является перспективным устройством, применяемым в химической отрасли с целью интенсификации процессов теплообмена. Теплопровод это полностью герметичная труба с любым профилем сечения, выполненная из металла. Корпус трубы футерован пористо-капиллярным материалом (фитилем), стекловолокном, полимерами, пористыми металлами и т.п. Количество подаваемого теплоносителя должно быть достаточным для пропитки фитиля. Предельная рабочая температура колеблется от любой низкой до 2000 °C. В качестве теплоносителя используют:

  • металлы;
  • высококипящие органические жидкости;
  • расплавы солей;
  • воду;
  • аммиак и т.п.

Одна часть трубы расположена в зоне отвода тепла, остальная - в зоне конденсации паров. В первой зоне образуются пары теплоносителя, во второй зоне они конденсируются. Конденсат возвращается в первую зону благодаря действию капиллярных сил фитиля. Большое количество центров парообразования способствует падению перегрева жидкости во время ее кипения. При этом существенно возрастает коэффициент теплоотдачи при испарении (от 5 до 10 раз). Показатель мощности теплопровода определяется капиллярным давлением.

Регенераторы

Регенератор имеет корпус, круглый или прямоугольный в сечении. Данный корпус изготавливается из листового металла или кирпича, в соответствии с температурой, поддерживаемой в процессе работы. Внутрь агрегата помещается тяжелый наполнитель:

  • кирпич;
  • шамот;
  • рифленый металл и т.п.

Регенераторы, как правило, являются парными аппаратами, поэтому через них одновременно протекает холодный и горячий газ. Горячий газ передает тепло насадке, а холодный получает его. Рабочий цикл состоит из двух периодов:

  • разогрев насадки;
  • охлаждение насадки.

Насадка из кирпича может выкладываться в различном порядке:

  • коридорный порядок (образует ряд прямых параллельных каналов);
  • шахматный порядок (образует каналы сложной формы).

Регенераторы могут оснащаться металлическими насадками. Перспективный аппаратом считается регенератор, оснащенный падающим плотным слоем зернистого материала.

Смесительные теплообменные аппараты. Конденсаторы смешения. Барботер. Охладители

Теплообмен веществ (жидкостей, газов, зернистых материалов), при их непосредственном соприкосновении или смешении отличается максимальной степенью интенсивностью. Применение такой технологии диктуется необходимостью технологического процесса. Для смешения жидкостей применяется:

  • емкостной аппарат, оснащенный мешалкой;
  • инжектор (используются также для непрерывного смешения газов).

Нагревание жидкостей может осуществляться посредством конденсации в них пара. Пар вводится сквозь множественные отверстия в трубе, которая изогнута в форме окружности или спирали и находится в нижней секции аппарата. Устройство, обеспечивающее протекания данного технологического процесса, называется барботером.

Охлаждение жидкости до температуры близкой к 0 °C, может осуществляться посредством ввода льда, который способен поглотить при таянии до 335 кДж/кг тепла либо сжиженных нейтральных газов, характеризующихся невысокой температурой испарения. Иногда применяют холодильные смеси, которые поглощают тепло после растворения в воде.

Жидкость может подогреваться посредством контакта с горячим газом и охлаждаться, соответственно, посредством контакта с холодным. Такой процесс обеспечивается скрубберами (вертикальными аппаратами), где навстречу восходящему потоку газа стекает поток охлаждаемой или нагреваемой жидкости. Скруббер можно наполнять различными насадками с целью увеличения поверхности контакта. Насадки разбивают поток жидкости на маленькие струйки.

К группе смесительных теплообменников также относятся конденсаторы смешения, функция которых состоит в конденсации паров посредством их прямого контакта с водой. Конденсаторы смешения могут быть двух типов:

  • прямоточные конденсаторы (пар и жидкость движутся в одном направлении);
  • противоточные конденсаторы (пар и жидкость движутся в противоположных направлениях).

Для увеличения площади контакта пара и жидкости, поток жидкости разбивается на мелкие струйки.

Воздушный охладитель с ребристыми трубами

Многие химические установки генерируют большое количество вторичного тепла, которое не регенерируется в теплообменниках и не может быть повторно использовано в процессах. Данное тепло выводится в окружающую среду и поэтому существует необходимость минимизировать возможные последствия. Для этих целей применяют различные типы охладителей.

Конструкция охладителей с ребристыми трубами состоит из ряда ребристых труб, внутри которых течет охлаждаемая жидкость. Наличие ребер, т.е. ребристость конструкции, значительно увеличивает поверхность охладителя. Ребра охладителя обдувают вентиляторы.

Данный тип охладителей используется в случаях, когда отсутствует возможность забора воды для целей охлаждения: например на месте монтажа химических установок.

Оросительные охладители

Конструкция оросительного охладителя представляет собой ряды последовательно смонтированных змеевиков, внутри которых движется охлаждаемая жидкость. Змеевики постоянно орошаются водой, за счет чего и происходит орошение.

Башенные охладители

Принцип действия башенного охладителя заключается в том, что подогретая вода разбрызгивается в верхней части конструкции, после чего стекает вниз по набивке. В нижней части конструкции за счет естественного подсоса, мимо стекающей воды струится поток воздуха, который поглощает часть тепла воды. Плюс, часть воды испаряется в процессе стекания, результатом чего также является потеря тепла.

К недостаткам конструкции относятся ее гигантские габариты. Так, высота башенного охладителя может достигать 100 м. Несомненным плюсом такого охладителя является функционирование без вспомогательной энергии.

Башенные охладители, оснащенные вентиляторами, работают по аналогии. С той разницей, что воздух нагнетается посредством данного вентилятора. Следует отметить, что конструкция с вентилятором значительно компактнее.


Теплообменник с поверхностью теплообмена 71,40 м²

Техническое описание:

Поз.1: Теплообменник

Температурные данные Сторона A Сторона B
Среда Воздух Дымовые (топочные) газы
Рабочее давление 0.028 бар изб. 0.035 бар изб.
Среда Газ Газ
Расход на входе 17 548.72 кг/ч 34 396.29 кг/ч
Расход на выходе 17 548.72 кг/ч 34 396.29 кг/ч
Температура на входе/выходе -40 / 100 °C 250 / 180 °C
Плотность 1.170 кг/м³ 0.748 кг/м³
Удельная теплоемкость 1.005 кДж/кг.К 1.025 кДж/кг.К
Теплопроводность 0.026 Вт/м.К 0.040 Вт/м.К
Вязкость 0.019 мПа.с 0.026 мПа.с
Скрытая теплота

Работа теплообменника

Описание теплообменника

Габариты

L1: 2200 мм
L2: 1094 мм
L3: 1550 мм
LF: 1094 мм
Вес: 1547 кг
Вес с водой: 3366 кг

Фланцевый погружной теплообменник 660 кВт

Технические характеристики:

380 В, 50 Гц, 2x660 кВт, 126 рабочих и 13 резервных ТЭНа, всего 139 ТЭНа, соединение в треугольник 21 канал по 31,44 кВт. Защита - NEMA тип 4,7

Рабочая среда: Газ регенерации (объемные проценты):
N2 - 85%, водяной пар-1,7%, CO2-12.3%, O2-0.9%, Sox-100 ppm, H2S-150ppm, NH3-200ppm. Присутствуют механические примеси - соли аммония, продукты коррозии.

Перечень документов, поставляемых с оборудованием:

Паспорт на фланцевую погружную нагревательную секцию с инструкцией по монтажу, пуску, останову, транспортированию разгрузке, хранению, сведение о консервации;
Чертеж общего вида секции;

Теплообменные аппараты из меди подходят для химически чистых и не агрессивных сред, например, таких как пресная вода. Этот материал обладает высоким коэффициентом теплопередачи. Недостатком таких теплообменников является довольно высокая стоимость.

Оптимальным решением для очищенных водных сред является латунь. По сравнению с теплообменным оборудованием из меди она дешевле и обладает более высокими характеристиками коррозионной стойкости и прочности. А также стоит отметить, что некоторые латунные сплавы устойчивы к морской воде и высоким температурам. Недостатком материала считается низкие показатели электро- и теплопроводности.

Наиболее распространенным материальным решением в теплообменных аппаратах является сталь. Добавление в состав различных легирующих элементов позволяет улучшить ее механические, физико-химические свойства и расширить диапазон применения. В зависимости от добавленных легирующих элементов сталь может применяться в щелочных, кислотных средах с различными примесями и при высоких рабочих температурах.

Титан и его сплавы качественный материал, с высокими прочностными и теплопроводными характеристиками. Данный материал очень легкий и находит применение в широком диапазоне рабочих температур. Титан и материалы на его основе проявляют хорошую коррозионную стойкость в большинстве сред кислотного или щелочного характера.

Неметаллические материалы применяют в тех случаях, когда требуется проведение теплообменных процессов в особо агрессивных и коррозионно активных средах. Они характеризуется высоким значением коэффициентом теплопроводности и стойкости к наиболее химически активным веществам, что делает их незаменимым материалом применяемым во многих аппаратах. Неметаллические материалы разделяют на два вида органические и неорганические. К органическим относят материалы на основе углерода, такие как графит и пластические массы. В качестве неорганических материалов применяют силикаты и керамику.

  • теплоноситель при протекании которого возможно выделение осадка преимущественно направляется с той стороны, с которой легче осуществить очистку теплопередающей поверхности;
  • теплоноситель оказывающий корродирующее воздействие направляют по трубам, это обусловлено меньшим требованием расхода коррозионностойкого материала;
  • для уменьшения потерь тепла в окружающую среду теплоноситель с высокой температурой направляют по трубам;
  • с целью обеспечения безопасности при использовании теплоносителя с высоким давлением принято пропускать его в трубах;
  • при протекании теплообмена между теплоносителями находящихся в разных агрегатных состояниях (жидкость-пар, газ), принято направлять жидкость в трубы, а пар в межтрубное пространство.

Подробнее о расчете и подборе теплообменного оборудования

Минимальная/максимальная расчетная температура металла для деталей под давлением: -39 / +30 ºС.

Для деталей не под давлением используется материал согласно EN 1993-1-10.
Классификация зоны: не опасная.
Категория коррозионности: ISO 12944-2: C3.

Тип присоединения труб к трубной доске: обварка.

Электрические двигатели

Исполнение: не взрывобезопасное
Класс защиты: IP 55

Частотные преобразователи

Предусмотрены для 50% электрических двигателей.

Вентиляторы

Лопасти изготовлены из усиленного материала алюминий/пластик с ручной регулировкой шага.

Уровень шума

Не превышает 85 ± 2 дБА на расстоянии 1 м и на высоте 1,5 м от поверхности.

Внешняя рециркуляция

Применяется.

Жалюзи

Верхние, входные и рециркуляционные жалюзи с пневматическим приводом.

Змеевик водяного подогревателя

Размещается на отдельной раме. Каждый подогреватель размещен под трубным пучком.

Вибрационные выключатели

Каждый вентилятор укомплектован вибрационным выключателем.

Стальные конструкции

Включают опоры, стержни, водоотводящие камеры. Комплектный пол для рециркуляции не входит в объем поставки.

Сетчатая защита

Сетчатая защита вентиляторов, вращающихся деталей.

Запасные части

Запасные части для сборки и запуска

  • Крепеж для стальных конструкций: 5%
  • Крепеж для крышек плит коллекторов: 2%
  • Крепеж для штуцеров воздушника и дренажа: 1 комплект каждого типа

Запасные части на 2 года эксплуатации (опционально)

  • Ремни: 10% (минимум 1 комплект каждого типа)
  • Подшипники: 10% (минимум 1 шт. каждого типа)
  • Прокладки для воздушника, дренажа: 2 шт. каждого типа
  • Крепеж для воздушника и дренажа: 2 комплекта каждого типа

Специальный инструмент

  • Один датчик уровня для установки шага лопастей вентилятора
  • Один комплект для ремонта оребрения

Техническая документация на русском языке (2 экз. + CD диск)

Для согласования рабочей документации:

  • Чертеж общего вида, включая нагрузки
  • Электрическая схема
  • Спецификация оборудования
  • План тестовых проверок

С оборудованием:

  • Основная документация о тестовых проверках согласно стандартов, кодов и других требований
  • Инструкция по эксплуатации
  • Комплексное описание агрегата

Тестовая и инспекционная документация:

  • План тестовых проверок на каждую позицию
  • Внутрицеховая инспекция
  • Гидростатический тест
  • Сертификаты на материалы
  • Паспорт сосуда давления
  • Инспекция TUV

Отгрузочная информация:

  • Трубный пучок полностью собран и протестирован
  • Змеевик теплофикационной воды полностью собран
  • Жалюзи полностью собраны
  • Водоотводящие камеры отдельными частями
  • Рециркуляционные жалюзи с плитами отдельными частями
  • Вентиляторы в сборе
  • Стальные конструкции отдельными частями
  • Электрические двигатели, осевые вентиляторы, вибрационные выключатели и запасные части в деревянных ящиках
  • Сборка на площадке с помощью крепежа (без сварки)

Объем поставки

Следующее оборудование и проектная документация включены в объем поставки:

  • Температурные и механические расчеты
  • Трубные пучки с заглушками для воздушника и дренажа
  • Вентиляторы в сборе
  • Электрические двигатели
  • Частотные преобразователи (50/% всех вентиляторов)
  • Вибрационные выключатели (100% всех вентиляторов)
  • Водоотводящие камеры
  • Опорные конструкции
  • Платформы обслуживания для опор и лестниц
  • Система внешней рециркуляции
  • Термодатчики на стороне воздуха
  • Жалюзи на рециркуляции/входе/выходе с пневмоприводом
  • Петли для подъема
  • Заземление
  • Поверхностная обработка
  • Запасные части для сборки и запуска
  • Запасные части на 2 года эксплуатации
  • Специальный инструмент
  • Ответные фланцы, крепеж и прокладки

Следующее оборудование не включено в объем поставки:

  • Услуги монтажа
  • Предварительная сборка
  • Анкерные болты
  • Теплоизоляция и огнезащита
  • Опоры для кабелей
  • Защита от града и камней
  • Платформа для доступа к электрическим двигателям
  • Электрические подогреватели
  • Шкаф управления для частотных преобразователей*
  • Материалы для электрического монтажа*
  • Соединения для датчиков давления и температуры*
  • Входные и выходные коллекторы, соединительные трубопроводы и фитинги*

История кожухотрубных теплообменников

Впервые аппараты такого рода были разработаны в самом начале ХХ века, когда у тепловых станций возникла потребность в теплообменниках, обладающих большой поверхностью теплообмена, и способных работать при достаточно высоком давлении.

Сегодня кожухотрубные теплообменники используются в качестве подогревателей, конденсаторов и испарителей. Опыт многолетней эксплуатации, многочисленные конструкторские разработки привели к значительному усовершенствованию их конструкции.

Тогда же, в начале прошлого века, кожухотрубные теплообменники начали широко применять и в нефтяной промышленности. Тяжелые условия нефтепереработки требовали нагреватели и охладители нефтяной массы, конденсаторы и испарители для отдельных фракций сырой нефти и органических жидкостей.

Высокие температура и давление, при которых работала аппаратура, свойства самой нефти и ее фракций приводили к быстрому загрязнению отдельных частей аппаратов. В связи с этим теплообменники должны были обладать такими конструктивными особенностями, которые бы обеспечивали легкость их очистки и при необходимости - ремонта.

Варианты исполнения

Со временем кожухотрубные теплообменники получили широчайшее применение. Это определялось простотой и надежностью конструкции, а также большим числом возможных вариантов исполнения, подходящих для различных условий эксплуатации, в том числе:

вертикальное или горизонтальное исполнение теплообменника, кипение или конденсация, однофазные потоки теплоносителя на горячей или холодной стороне аппарата;

возможный рабочий диапазон давлений от вакуума до довольно высоких значений;

возможность изменения перепадов давления в широких пределах по обеим сторонам теплообменной поверхности как следствие большого числа вариантов конструкций.

возможность удовлетворения требований по термическим напряжениям, не повышая существенно стоимость аппарата;

размеры аппаратов - от маленьких до самых больших, до 6000 м²;

материалы могут быть подобраны в зависимости от требований к коррозии, давлению и температурному режиму, с учетом их соответствующей стоимости;

поверхности теплообмена могут быть использованы как внутри труб, так и снаружи;

возможность доступа к пучку труб для их ремонта или очистки.

Однако широкие области применения кожухотрубных теплообменников при подборе наиболее подходящих вариантов для каждого конкретного случая не должны исключать и поиск альтернативных вариантов.

Составные части

Составные части кожухотрубных теплообменников: пучки труб, укрепленные в трубных решетках, крышки, кожухи, патрубки, камеры и опоры. Трубное и межтрубное пространства в них чаще всего разделены перегородками.

Принципиальные схемы и типы

Принципиальные схемы наиболее широко распространенных типов кожухотрубных теплообменников представлены на рисунке:

Кожух теплообменника - это труба, сваренная из стальных листов. Различие кожухов состоит главным образом в способе соединения корпуса с трубной решеткой и с крышками. Толщину стенки кожуха выбирают в зависимости от рабочего давления среды и его диаметра, но в основном принимают не менее 4 мм. К кромкам кожуха посредством фланцев приваривают крышки или днища. Снаружи к кожуху крепятся опоры аппарата.

В кожухотрубных теплообменниках общее эффективное сечение межтрубного пространства обычно больше в 2-3 раза, чем соответствующее сечение труб. Поэтому независимо от разности температур теплоносителей и их фазового состояния общий коэффициент теплопередачи лимитируется поверхностью межтрубного пространства и остается невысоким. С целью его повышения устанавливают перегородки, что увеличивает скорость теплоносителя и повышает эффективность теплообмена.

Пучок труб закрепляется в трубных решетках различными методами: с помощью разбортовки, развальцовки, запайки, заварки или сальниковыми креплениями. Трубные решетки привариваются к кожуху (Тип 1 и 3), либо зажимаются болтами между фланцами крышки и кожуха (Тип 2 и 4), или же соединяются болтами лишь с фланцем (Тип 5 и 6). В качестве материала для решетки используется обычно листовая сталь, толщина которой должна быть не меньше 20 мм.

Данные теплообменники различаются по конструкции: жесткой (Тип 1 и 10), полужесткой (Тип 2, 3 и 7) и нежесткой (Тип 4, 5, 6, 8 и 9), по способу движения теплоносителя - многоходовые и одноходовые, прямоточные, поперечноточные и противоточные, и по способу расположения - вертикальные, горизонтальные и наклонные.

На рисунке Тип 1 представлен одноходовой теплообменник жесткой конструкции с прямыми трубками. Кожух жестко связан с трубками решетками, возможность компенсации тепловых удлинений отсутствует. Конструкция таких аппаратов проста, но их можно применять только при не очень большой температурной разности между пучком труб и корпусом (до 50°C). Кроме того, коэффициент теплопередачи в аппаратах такого типа низок, потому что скорость теплоносителя в межтрубном пространстве невысока.

В кожухотрубных теплообменниках сечение межтрубного пространства обычно в 2-3 раза больше, чем соответствующее сечение труб. Поэтому на общий коэффициент теплопередачи влияет не столько разность температур теплоносителей или их фазовое состояние, напротив, он лимитируется поверхностью межтрубного пространства и остается невысоким. С целью его повышения в межтрубном пространстве делают перегородки, что несколько увеличивает скорость теплоносителя и тем самым повышает эффективность теплообмена.

Перегородки, установленные в межтрубном пространстве, увеличивая скорость теплоносителя, повышают коэффициент теплоотдачи.

В парожидкостных теплообменниках обычно в межтрубном пространстве пропускают пар, а жидкость идет по трубам. При этом разность температур труб и стенки корпуса обычно очень велика, что требует установки различного вида компенсаторов. В этих случаях используют линзовые (Тип 3), сильфонные (Тип 7) сальниковые (Тип 8 и 9), компенсаторы.

Однокамерные теплообменники с W - или чаще U -образными трубами также эффективно устраняют тепловые напряжения в металле. Их целесообразно использовать при высоких давлениях теплоносителей, так как в аппаратах высокого давления крепление труб в решетках - операции дорогие и технологически сложные. Однако теплообменники с гнутыми трубами также не получили широкого распространения в связи с трудностью получения труб с различными радиусами изгиба, сложностью замены гнутых труб и проблемами, возникающими при их очистке.

Конструкция теплообменника, предусматривающая жесткое крепление одной трубной решетки и свободное перемещение второй, более совершенна. В этом случае устанавливается дополнительная внутренняя крышка, которая относится непосредственно к трубной системе (Тип 6). Незначительное удорожание аппарата, связанное с увеличением диаметра корпуса и изготовлением второго, дополнительного, днища, оправдывается надежностью в эксплуатации и простотой конструкции. Такие аппараты называют теплообменниками «с плавающей головкой».

Теплообменники поперечного тока (Тип 10) отличает повышенный коэффициент теплоотдачи, так как теплоноситель в межтрубном пространстве движется поперек пучка труб. В некоторых видах таких теплообменников при использовании в межтрубном пространстве газа, а в трубах - жидкости, коэффициент теплоотдачи дополнительно повышают, применяя трубы с поперечными ребрами.

Принцип действия кожухотрубных теплообменников:

Виды кожухотрубных теплообменников:

подогреватели водоводяные;
охладители воды и масел компрессоров и дизелей;
подогреватели пароводяные;
маслоохладители различных типов турбин, гидравлических прессов, насосных и компрессорных систем, силовых трансформаторов;
охладители и подогреватели воздуха;
охладители и подогреватели пищевых сред;
охладители и подогреватели, использующиеся в нефтехимии;
подогреватели воды в бассейнах;
испарители и конденсаторы холодильных установок.

Сфера и область применения

Кожухотрубные теплообменники применяются в промышленных морозильных установках, в нефтехимической, химической и пищевой отраслях, для тепловых насосов в системах водоочистки и канализации.

Кожухотрубные теплообменники находят применение в химической и тепловой промышленности для теплообмена между жидкостными, газо- и парообразными теплоносителями в термохимических процессах, и сегодня являются наиболее широко распространенными аппаратами.

Преимущества:

Надежность кожухотрубных теплообменников в эксплуатации:

Кожухотрубные теплообменные аппараты с легкостью выдерживают резкие изменения температуры и давления. Пучки труб не разрушаются при вибрации и гидравлических ударах.

Слабая загрезняемость аппаратов

Трубы этого типа теплообменников загрязняются мало и их можно довольно легко очистить кавитационно-ударным методом, химическим, или - для разборных аппаратов- механическим способами.

Длительный срок службы

Срок службы довольно длительный - до 30 лет.

Адаптируемость к различным средам

Кожухотрубные теплообменники, применяемые сегодня в промышленности, адаптированы к самым различным технологическим средам, в том числе к санитарной, морской и речной воде, нефтепродуктам, маслам, химически активным средам, и даже самые агрессивные среды практически не снижают надежность теплообменных аппаратов.

Кожухотрубные теплообменники – аппарат теплообмена между двумя потоками с нагревом одной среды (жидкой, газообразной) за счет охлаждающего агента. В процессе термического процесса не происходит перемешивания двух сред, они могут менять агрегатное состояние. Горячий и холодный теплоносители движутся в разных каналах, а теплообмен происходит через стенки трубных пучков. Для увеличения теплопередающей поверхности используют оребрение труб, которое выполняется навивкой стальной ленты.

Название аппарат получил от кожуха с расположенными внутри трубками, посредством которых и осуществляется рекуперация. Диапазон рабочих температур аппарата от -60°С до +600°С. В зависимости от назначения он может служить теплообменником, холодильником, конденсаторами или испарителем.

Изделие находит применение в теплотехнике для оборудования систем ГВС. Высокая эффективность теплообменников сокращает расход топлива, затрачиваемого на технологический процесс или теплообеспечение. Кожухотрубные теплообменники всегда занимали лидирующие позиции по востребованности на рынке отопительного оборудования. За последние 15–20 лет появилось много новых аналогов с отличными характеристиками. Однако теплотехники предпочитают использовать эти, проверенные временем, надежные тепловые агрегаты.

Какие существуют виды теплообменников?

Согласно ГОСТ 9929–82 кожухотрубчатые теплообменные изделия выпускаются диаметром от 15,9 см до 300 см и выдерживают давление в диапазоне от вакуума до 160 кгс/см². В длину аппарат может быть от нескольких сантиметров до 8–9 метров.

Поверхность теплообмена может достигать нескольких тысяч квадратных метров.

Изделия выпускаются следующих видов:

Н – с неподвижно встроенными трубчатыми решетками;

К – с температурным компенсатором;

П – с плавающей головкой;

У – с U-образной формой трубчатых элементов;

ПК – комбинированная, оснащена плавающей головкой со встроенным компенсатором.

Кожухотрубчатые теплообменники с неподвижными трубными решетками имеют жесткую конструкцию компонентов. Они наиболее распространены в нефтегазовой отрасли и химической промышленности. Этот вид занимает 75% всего рынка кожухотрубчатых теплообменников. Отличительной особенностью этого вида является то, что теплообменные трубы жестко скреплены с трубными решетками (развальцованы), которые в свою очередь, приварены к внутренней стенке корпуса. В связи с этим исключена возможность взаимных перемещений элементов в распределительной камере.

Для подачи и отвода теплоносителя труб и межтрубного пространства, а также отвода конденсата изделия оборудуются штуцерами или другой трубопроводной арматурой, выходящей наружу теплообменника. Интенсивность теплоотдачи при поперечном перемещении потока выше, поэтому его направляют по зигзагообразной траектории. Для этого устанавливают поперечные перегородки, они не примыкают к внутренней поверхности кожуха, оставляя зазор для перемещения потока. Для сосредоточения потока ближе к пучку труб, специальными пластинами сужают рабочее пространство камеры.

В кожухотрубном теплообменнике с компенсатором на корпусе тепловые удлинения компенсируются продольным сжатием или удлинением гибких вставок и расширителей. Такие аппараты применяются при избыточной деформации компенсатора в пределах 10–15 мм. В такой полужесткой конструкции могут применяться линзовые, сальниковые или сильфонные компенсаторы для компенсации температурных удлинений и перекоса труб.

Более совершенной считается конструкция аппарата с плавающей головкой . Одна из трубных досок крепится жестко, другая решетка свободно перемещается вместе с трубной системой. Плавающей готовкой называют подвижную решетку с крышкой, которой она оснащена. Некоторое удорожание аппарата ввиду увеличения диаметра корпуса и дополнительного днища оправдывается большей надежностью в эксплуатации.

В изделии с U-образными трубами оба конца трубного пучка закреплены на одной трубной решетке, труба изогнута петлей на 180° радиусом 4d или больше. Это позволяет трубам свободно удлиняться в сторону изгиба трубного пучка.

По направлению перемещения среды в аппарате различают одно/многоходовые теплообменники . В одноходовом вещество двигается однократно по кратчайшей траектории от входа к выходу. Наиболее ярким представителем этого вида является водоводяной подогреватель ВВП, применяемый в отопительных системах. Когда лучше применять такой аппарат? Лучше всего там, где не требуется высокая интенсивность процесса теплообмена и где существует небольшая разница между температурой теплоносителя и окружающей среды.

В многоходовых поток перенаправляют с помощью системы продольных и поперечных перегородок в объеме. Оптимальным считается применение теплообменника в тепловых системах с большой скоростью перемещения или низкой теплоотдаче агента. По способу перемещения агента различают прямоточные, противоточные и перекрестноточные изделия.

Для работы теплообменника в агрессивных средах вместо стального пучка труб применяют графитовые или стеклянные трубы, герметизируют корпус сальниками специальных материалов.

По какому принципу работают агрегаты?

Применяемый в функционале принцип рекуперации основывается на раздельном теплообмене без перемешивания продуктов. Теплопередача от более нагретой среды менее нагретой осуществляется через стенки труб, разделяющих два агента. При этом соблюдается принцип противотока, как обеспечивающий оптимальную теплопередачу. Один теплоноситель (жидкость, газ, пар) подается под давлением в пространство между труб, второй циркулирует по трубам и может отличаться агрегатным состоянием от первого.

Далее между жидкими и газообразными веществами происходят теплообменные процессы в штатном режиме. Для увеличения коэффициентов теплоотдачи используются достаточно высокие скорости продуктов. У пара и газа она должна быть 8–25 м/с, для жидких агентов от 1,5 м/с. Для повышения теплоотдачи трубы снабжаются специальными ребрами.

Из чего состоит кожухотрубчатый аппарат?

Главным достоинством кожухотрубчатого теплообменника и причиной популярности является несложная, но очень надежная конструкция. Она состоит из распределительной камеры, оснащенной патрубками, цилиндрического кожуха, трубных решеток и пучка труб. Конструкция дополнена крышками с торцов и опорами для размещения на горизонтальном основании или креплениями при другой ориентации в пространстве.

Для интенсификации теплообмена применяют трубы с наружными ребрами, увеличивающими теплоотдачу. Если требуется снизить теплоотдачу в окружающую среду и повысить теплоаккумулирующие свойства, кожух покрывают теплоизолирующим слоем. Также есть конструкции «труба в трубе». Кожух чаще всего изготавливается из листовой стали толщиной не менее 4 мм. Решетки чаще всего производятся из того же материала и имеют толщину не менее 20 мм. Основным конструкционным элементом является пучок металлических труб, с одной или обеих сторон он крепится к трубным решеткам.

Маркировка изделий

Маркировка теплообменников состоит из последовательности знаков буквенно-цифрового кода. Например, аббревиатура 1400 ТКГ-1,5-0,5 – М1/40Д-6-1-У-И расшифровывается так:

диаметр 1400 мм;

давление внутри труб 1,5 Мпа;

то же, только в пространстве между труб 0,5 Мпа;

тип материала М1;

трубы оребренные диаметром 40 мм;

длина изделия 6 м;

одноходовая конструкция;

используется в умеренном климате;

имеются приспособления для крепления внешней теплоизоляции.

Преимущества и недостатки изделий

Кожухотрубчатые теплообменники имеют ряд достоинств, обеспечивших конкурентные преимущества в своем сегменте теплообменников на рынке теплового оборудования:

1. Они обладают высокой стойкостью к гидроударам в то время, когда другие аналоги такой способностью не обладают.

2. Они могут работать с загрязненными продуктами или в агрессивных средах в отличие от других теплообменников. Например, пластинчатые аналоги работают исключительно на чистом агенте.

3. Простота обслуживания (легко производить механическую очистку), проведения ПТО и высокая ремонтопригодность.

Недостатками изделий этого типа являются:

1. Более низкий по сравнению с пластинчатыми изделиями коэффициент полезного действия, меньшая площадь теплопередающей поверхности.

2. Большие габариторазмеры, следствием чего является повышенная материалоемкость и стоимость аппарата.

3. Значительная зависимость теплоотдачи от скорости перемещаемого агента.

Область применения аппаратов

Кожухотрубчатые аппараты применяются в качестве базисного оборудование для тепловых пунктов и инженерных сетей жилищно-коммунального хозяйства. Индивидуальные тепловые пункты (ИТП) имеют существенные преимущества перед централизованным тепловодоснабжением. Они более эффективно производят энергообеспечение объектов и обеспечение теплового режима зданий, чем теплоцентрали.

Теплообменное оборудование этого типа незаменимо в случаях, когда требуется обеспечить развязку по давлению и температуре теплоносителя во вторичном контуре ГВС от подачи сетевой воды. Это особенно актуально, если отопительная система подключается к теплоснабжающей сети по независимой схеме присоединения. Подобное случается, когда статическое давление, например, отопительных систем присоединенных зданий ввиду неровностей рельефа выше, чем в линии сети. Или наоборот, когда давление в сетевой «обратке» выше, чем в обслуживающей системе отопления.

Теплообменники этого типа применяются в нефтяной, газовой, химической промышленности. Их можно обнаружить в большой теплоэнергетике, где используются теплоносители с высокими параметрами. Разносторонняя сфера применения не ограничивается только этими отраслями. В качестве испарителей используются в ребойлерах, конденсаторах-холодильниках воздушного охлаждения, ректификационных колоннах. Могут также задействоваться для охлаждения сырьевых масс, компонентов или готовой продукции. Они широко применяются в технологических процессах молочного, пивного и других производствах пищевой промышленности.

Среди всех разновидностей теплообменников этот вид наиболее распространен. Его применяют при работе с любыми жидкостями, газовыми средами и парообразными, в том числе, если состояние среды меняется в процессе перегона.

История появления и внедрения

Изобрели кожухотрубные (или ) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.

Как мы видим на представленной схеме, кожухотрубный теплообменник состоит из пучка трубок, которые расположены в своей камере и закреплены на доске либо решетке. Кожух – собственно, название всей камеры, сваренной из листа не менее 4 мм (или больше, в зависимости от свойств рабочей среды), в которой находятся мелкие трубки и доска. В качестве материала для доски используют обыкновенно листовую сталь. Между собой трубки соединяются патрубками, имеются также вход и выход в камеру, отвод для конденсата, перегородки.

В зависимости от количества труб и их диаметра, колеблется мощность теплообменника. Так, если передающая тепло поверхность составляет около 9 000 кв. м., мощность теплообменника составит 150 МВт, это пример работы паровой турбины.

Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.

Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.

Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.

Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.

Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.

В зависимости от способа крепления труб к доске или решетке, выделяют:

  • Приваренные трубы;
  • Закрепленные в развальцованных нишах;
  • Соединенные болтами с фланцем;
  • Запаянные;
  • Имеющие сальники в конструкции крепежа.

По типу конструкции кожухотрубные теплообменники бывают (см. рисунок-схему выше):

  • Жесткие (буквы на рис. а, к), нежесткие (г, д, е, з, и) и наполовину жесткие (буквы на рис. б, в и ж);
  • По количеству ходов – одно- или многоходовые;
  • По направлению тока технической жидкости – прямого, поперечного или против направленного тока;
  • По расположению доски горизонтальные, вертикальные и расположенные в наклонной плоскости.

Широкие возможности кожухотрубного теплообменника

  1. Давление в трубках может достигать разных значений, от вакуума до наивысших;
  2. Можно достичь необходимого условия по термическим напряжениям, при этом цена устройства существенно не поменяется;
  3. Размеры системы тоже могут быть различными: от бытового теплообменника в ванную комнату до промышленного площадью 5000 кв. м.;
  4. Нет необходимости предварительно очищать рабочую среду;
  5. Для создания сердцевины используют разные материалы, в зависимости от затрат на производство. Однако все они соответствуют требованиям температуры, давления и устойчивости к коррозии;
  6. Отдельный участок труб можно извлечь для чистки или ремонта.

Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.

В сравнении с теплообменниками U, W-трубчатыми и с неподвижными трубками кожухотрубные имеют больше преимуществ и являются эффективнее. Поэтому их чаще покупают, несмотря на высокую стоимость. С другой стороны, самостоятельное изготовление подобной системы вызовет большие трудности, а скорее всего, приведет к значительным потерям тепла в процессе работы.

Особое внимание при эксплуатации теплообменника следует уделять состоянию труб, а также настройке в зависимости от конденсата. Любое вмешательство в систему приводит к изменению площади теплообмена, поэтому ремонт и пуско-наладку должны производить обученные специалисты.

Вас может заинтересовать:

    Промышленный насос необходим практически на любом производстве. В отличие от бытовых насосов они должны выдерживать высокие нагрузки, быть износостойкими и иметь максимальную производительность. Кроме того, насосы подобного типа должны быть экономически выгодными для предприятия, на котором они используются. Для того чтобы купить подходящий промышленный наcос, необходимо изучить его основные характеристики и учитывать...

    Нагрев и охлаждение жидкостей является необходимым этапом в ряде технологических процессах. Для этого используются теплообменники. Принцип действия оборудования основан на передаче тепла от теплоносителя, функции которого выполняет вода, пар, органические и неорганические среды. Выбирая, какой теплообменник лучше для конкретного производственного процесса, нужно базироваться на особенностях конструкции и материала, из...

    Вертикальный отстойник имеет форму цилиндрического резервуара, сделанного из металла (иногда его делают квадратной формы). Форма днища – конусная или пирамидальная. Отстойники можно классифицировать исходя из конструкции впускного устройства – центральное и периферийное. Чаще всего используется вид с центральным впуском. Вода в отстойнике движется в нисходяще-восходящем движении. Принцип работы вертикального...

    Министерство энергетики разработало план развития зеленой электроэнергетики к 2020 году. Доля электроэнергии от альтернативных источников электроэнергии должна достигнуть 4,5% от общего количества энергии, вырабатываемой в стране. Однако по оценкам экспертов такое количество электроэнергии от возобновляемых источников стране просто не нужно. Общее мнение в этой области - развивать выработку электроэнергии за счет...



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования