Вакуумный деаэратор какое давление в нем. Деаэратор вакуумный марки СДВ(В)

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Деаэратор вакуумный марки СДВ(В) применяется для деаэрации подпиточной или сетевой воды закрытых и открытых теплосетей.

Устройство и принцип работы деаэратора

В вакуумной деаэрационной колонке применена двухступенчатая схема деаэрации: 1ая ступень - кавитационная, 2ая ступень - пленочно-капельная. Поток исходной воды с температурой 55-75 грС и давлением 0,2-0,6 МПа, подается на рабочие сопла (1ая ступень дегазации), где происходит вскипание воды и создание кавитационного течения. Растворенные газы выделяются в парогазовые пузыри, и образовавшийся двухфазный поток поступает на перепускные листы (2-ая ступень деаэрации).

После деаэрационной колонки деаэрированная вода стекает в деаэраторный бак, откуда насосами подается в обратный трубопровод теплосети или в аккумуляторные баки.

Регулирование уровня воды в деаэраторной баке осуществляется при помощи регулирующего клапана, установленного на линии подачи исходной воды на деаэрационную колонку.

Оформить заказ

Заказать НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Деаэраторы вакуумные серии ДВ предназначены для удаления коррозионно-агрессивных газов (кислорода и свободной углекислоты) из питательной воды водогрейных котлов и подпиточной воды систем теплоснабжения в котельных и на ТЭЦ. В качестве теплоносителя в них может использоваться перегретая деаэрированная вода и пар. Деаэраторы изготавливаются в соответствии с требованиями ГОСТа 16860 - 88.

Основные технические характеристики деаэратора вакуумного ДВ-50 приведены в таблице.

Цена
265 000 руб.

Технические характеристики моделей Деаэратор ДВ-50
Производительность номинальная, т/ч 50
Давление рабочее абсолютное, МПа (кгс/см²) 0,0075-0,05 (0,075-0,5)
Давление исходной воды избыточное, МПа (кгс/см²) 0,2 (2,0)
Рабочая среда Вода, пар
Температура деаэрированной воды, °С 40-80
Температура теплоносителя, °С 70-180
Пробное гидравлическое давление, абс., МПа (кгс/см²) 0,3 (3,0)
Максимальное давление при работе защитного устройства, абс., МПа (кгс/см²) 0,17 (1,7)
Нагрев воды при номинальной произв-ти мин/макс, °С 15/25
Тип охладителя выпара ОВВ-8
Тип эжектора (Рвс 0,02 МПа) ЭВ-60
Тип эжектора (Рвс 0,006 МПа) ЭВ-60
Масса сухая, кг 1020

ОПИСАНИЕ ИЗДЕЛИЯ

УСТРОЙСТВО, ПРИНЦИП РАБОТЫ

Деаэрационная установка состоит из деаэратора вакуумного ДВ, охладителя выпара ОВВ, эжектора водоструйного ЭВ.

В деаэраторе применена двухступенчатая схема деаэрации воды: 1-ая ступень - струйная, 2-ая – барботажная, в качестве которой используется непровальная перфорированная тарелка. Вода, направляемая на дегазацию по тру­бе попадает на верхнюю тарелку. После­дняя секционирована с таким расчетом, что при минимальной (25%) нагрузке работает только часть отверстий во внутреннем сек­торе. При увеличении нагрузки включаются в работу дополнительные ряды отверстий. Секционирование верхней тарелки исключа­ет гидравлические перекосы по пару и воде при изменениях нагрузки и всегда обеспечивает обработку паром струй воды. Пройдя струйную часть, вода попадает на пе­репускную тарелку, предназначенную для сбора и перераспределения воды на начальный учас­ток, расположенный ниже барботажной та­релки. Перепускная тарелка имеет отвер­стие в виде сектора, который с одной стороны примыкает к вертикальной сплош­ной перегородке, идущей вниз до основа­ния корпуса колонки. Вода с перепускной та­релки направляется на непровальную барботажную тарелку, выполненную в виде кольца с рядами отверстий, ориентиро­ванными перпендикулярно потоку воды. К барботажной тарелке примыкает водо­сливной порог, который проходит до ниж­него основания деаэратора. Вода протекает по барботажному листу, переливается через по­рог и попадает в сектор, образуемый порогом и перегородкой, а затем отводится из деа­эратора через трубу. Весь пар подводится под барботажную тарелку по трубе. Под тарелкой устанавливается паровая подуш­ка, и пар, проходя через отверстия, барботирует воду. С увеличением нагрузки, а сле­довательно, и расхода пара, высота паровой подушки увеличивается и избыточный пар пе­репускается в обвод барботажного листа че­рез отверстия в перепускных трубах. Затем пар проходит через горловину в перепускной тарелке и поступает в струйный отсек, где большая часть конденсируется. Парогазовая смесь отсасывается по трубе в охладитель выпара.

При использовании в качестве греющей среды перегретой воды последняя также по­дается под барботажную тарелку по трубе. Попадая в область с давлением ниже ат­мосферного, вода вскипает, образуя под лис­том паровую подушку. Вода, оставшаяся пос­ле вскипания, по водоперепускной трубе поступает на барботажную тарелку, где про­ходит обработку совместно с исходным пото­ком воды. Дальнейший путь пара, выделив­шегося из перегретой воды, не отличается от описанного выше.

Вакуумная деаэрационная колонка ДВ-50 имеет цельносварную конструкцию. Для возможности её разъема предусматрива­ется монтажный стык, расположенный выше перепускной тарелки.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

ТИПОВАЯ ИНСТРУКЦИЯ
ПО ЭКСПЛУАТАЦИИ АВТОМАТИЗИРОВАННЫХ
ДЕАЭРАЦИОННЫХ УСТАНОВОК
ПОДПИТКИ ТЕПЛОСЕТИ

ТИ 34-70-032-84

СОЮЗТЕХЭНЕРГО
Москва 1985

РАЗРАБОТАНО предприятием «Сибтехэнерго»

ИСПОЛНИТЕЛЬ А.М. БРАВИКОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 13.07.84 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

ТИПОВАЯ ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ АВТОМАТИЗИРОВАННЫХ ДЕАЭРАЦИОННЫХ УСТАНОВОК ПОДПИТКИ ТЕПЛОСЕТИ

ТИ 34-70-032-84

Вводится впервые

Срок действия установлен

до 01.01.95 г.

Настоящая Типовая инструкция распространяется на автоматизированные деаэрационные установки с вакуумными струйно-барботажными деаэраторами и атмосферными деаэраторами со струйными и струйно-барботажными колонками, работающими на постоянных среднесуточных гидравлических нагрузках при равномерном распределении потоков воды и пара между всеми параллельно работающими деаэраторами, объединенными групповым регулированием режима деаэрации.

Типовая инструкция устанавливает требования к эксплуатации деаэрационных установок подпитки теплосети.

Типовая инструкция является основой при составлении местной инструкции и обязательна для инженерно-технического персонала электростанций и отопительно-производственных котельных, разрабатывающего местные инструкции.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Деаэраторы подпитки теплосети предназначены для удаления из подпиточной воды коррозионно-активных газов - кислорода и свободной углекислоты.

1.2. Деаэрационная установка состоит из:

Подогревателя недеаэрированной воды;

Деаэрационных колонок-деаэраторов;

Подпиточных насосов;

Подпорного бака подпиточных насосов.

Роль подпорных баков, как правило, выполняют аккумуляторные баки теплосетей или деаэраторные баки атмосферных деаэраторов, а также в некоторых установках с вакуумными деаэраторами специально установленные для этой цели баки;

Средств автоматического регулирования, обеспечивающих автоматическое поддержание режима деаэрации и подпитки теплосети (приложение );

Индивидуальных для каждого вакуумного деаэратора газоотсасывающих устройств;

Индивидуального для каждого атмосферного деаэратора охладителя выпара;

Охладителя деаэрированной воды в установках с атмосферными деаэраторами.

1.3. Технические (проектные) характеристики деаэраторов (рис. - ) приведены в табл. .



а - выпускаемые с 1976 г.; б - выпущенные в период 1968 - 1976 гг. и реконструированные;
в - опытные данные зависимостей остаточного содержания кислорода в деаэрированной
воде от нагрева воды в деаэраторе;
1 - цилиндрический горизонтальный корпус; 2 - 5 - дырчатые струйные тарелки; 6 - барботажная тарелка;
7 - секционирующий порог; 8 - испарительный отсек; 9 - водоотводящий канал; 10 - пароперепускной
клапан; 11 - водоперепускной короб; 12 - патрубок подвода воды на деаэрацию; 13 - патрубок подвода
теплоносителя; 14 - патрубок отвода выпара; 15 - патрубок отвода деаэрированной воды; 16 и 17 -
датчики измерения температуры в отсеке и уровня воды, используемые при наладке деаэратора;
18 - отверстие в перегородке между секциями деаэратора ДВ-800 и ДВ-1200;
I - для деаэратора ДВ-400, выпущенного в период 1968 - 1976 гг., испытанного на ТЭЦ Горьковского
автозавода; максимальная производительность деаэратора 500 т/ч при температуре недеаэрированной
воды 30 °С; II - для деаэратора ДВ-800, выпущенного в период 1968 - 1976 гг., испытанного на
Усть-Каменогорской ТЭЦ. Максимальная производительность деаэратора 800 т/ч при температуре
недеаэрированной воды 30 ° C; II - для деаэратора ДВ-400, выпущенного после 1976 г., испытанного в
тепловых сетях г. Курска

Рис. 2. Атмосферный деаэратор со струйной колонкой:

а - конструкция деаэратора; б - зависимости остаточного содержания кислорода в деаэрированной воде
от расхода воды в деаэратор для колонки БКЗ производительностью 200 т/ч; в - зависимости предельной
производительности деаэратора от температуры недеаэрированной воды, поступающей в деаэратор;
1 - деаэрационная колонка; 2 - деаэраторный бак; 3 и 4 - патрубки подвода воды и пара; 5 и 6 - патрубки
отвода деаэрированной воды и паровоздушной смеси; 7 - водораспределительное устройство;
8 - 12 - струйные тарелки; 13 - парораспределительное устройство; температура недеаэрированной воды,
поступающей в деаэратор: I - 97 °С; II - 67 °С и III - 40 °С; IV и V - колонки БКЗ производительностью
200 и 100 т/ч; - - - - предполагаемый характер протекания процесса

Рис. 3. Атмосферные деаэраторы со струйно-барботажной колонкой производительностью:

а - от 50 до 100 т/ч; б - от 200 до 300 т/ч; в - от 75 до 300 т/ч;
1 - деаэрационная колонка; 2 - деаэраторный бак; 3 и 4 - патрубки подвода воды и пара;
5 и 6 - патрубки отвода деаэрированной воды и паровоздушной смеси; 7 - водосливной гидрозатвор;
8 и 9 - струйные тарелки; 10 - барботажная тарелка; 11 - пароперепускной клапан;
12 - водозаливная труба; 13 - водораспределительное устройство

Таблица 1

Вакуумные деаэраторы (рис. , а и б )

Атмосферные деаэраторы с колонкой

Таблица 2

Остаточное содержание свободной углекислоты за деаэратором (если в нормально работающем деаэраторе не происходит полного ее удаления) устраняется путем подщелачивания подпиточной воды.

1.5. Деаэраторы подпитки теплосети один раз в год должны подвергаться внутреннему осмотру через съемные люки, а при необходимости текущему ремонту и чистке деаэрирующих элементов.

1.6. Условные обозначения элементов схем приведены в приложении .

2. ПРЕДОХРАНИТЕЛЬНЫЕ УСТРОЙСТВА И МЕРЫ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ДЕАЭРАЦИОННЫХ УСТАНОВОК

2.1. Деаэраторы атмосферного типа должны подвергаться испытанию и техническому освидетельствованию по нормам Госгортехнадзора СССР.

2.2. В качестве защитных устройств от недопустимого повышения давления и от переполнения водой в атмосферных и вакуумных деаэраторах применяются гидравлические затворы.

2.3. Давление срабатывания гидрозатвора в атмосферных деаэраторах 0,15 МПа (1,5 кгс/см 2), максимально допустимое давление в деаэраторе при работе гидрозатвора 0,17 МПа (1,7 кгс/см 2).

2.4. При сливе деаэрированной воды из вакуумного деаэратора в бак атмосферного давления самотеком установка защитных гидравлических затворов не требуется, так как роль защитного затвора выполняет сливной трубопровод. При этом запорная и регулирующая арматура на сливном трубопроводе должна отсутствовать.

2.5. Атмосферные и вакуумные деаэраторы перед включением в работу после монтажа и ремонта, связанного с восстановлением плотности деаэратора, а также по мере необходимости должны подвергаться гидравлическому испытанию избыточным давлением 0,2 МПа (2,0 кгс/см 2), но не реже чем через каждые 8 лет.

2.6. Подпорные баки должны быть оборудованы переливной трубой для защиты от переполнения и выравнивания давления внутри и снаружи бака. Пропускная способность переливной трубы должна быть не менее пропускной способности всех труб, подводящих воду к баку. Сечение вестовой трубы для баков атмосферного давления должно обеспечивать свободное поступление в бак и свободный выпуск из бака воздуха, исключающие образование вакуума при откачке воды из бака и повышение давления выше атмосферного при заполнении бака.

2.7. Баки-аккумуляторы должны иметь антикоррозионную защиту, которая может быть осуществлена с помощью:

Герметизирующей жидкости АГ-4 (герметика);

Различных покрытий внутренней поверхности баков;

Катодной защиты.

2.8. Ежегодно определяется состояние баков-аккумуляторов и пригодность их к дальнейшей эксплуатации в соответствии с противоаварийным циркуляром № Ц-08-82 (Т) «О предотвращении внезапных разрушений металлических баков-аккумуляторов горячей воды» (М.: СПО Союзтехэнерго, 1984).

3. ДЕАЭРАЦИОННЫЕ УСТАНОВКИ С ВАКУУМНЫМИ ДЕАЭРАТОРАМИ (рис. - ) 3.1. Особенности тепловых схем деаэрационных установок

Рис. 6. Схема деаэрационной установки с вакуумным деаэратором, вакуумным подпорным баком и выносным баком-аккумулятором (а ) и защитного гидрозатвора (б ).


3.2.4. Дать заявку на сборку электрических схем питания электроприводов запорно-регулирующей арматуры, КИП и насосов.

3.2.5. Дать заявку на подготовку к работе водоподготовительной установки.

3.2.8. Подготовить к работе подогреватель недеаэрированной воды; собрать схемы отвода из подогревателя конденсата, греющего пара и неконденсирующихся газов. Для схемы рис. подготовить к работе подогреватель перегретой воды.

а) открыть задвижку на охлаждающей воде перед эжектором;

б) открытием регулирующего клапана РКР на недеаэрированной воде подать охлаждающую воду через эжектор в количестве 100 - 160 т/ч;

в) плавно открывая задвижку 17 на паропроводе перед эжектором, в течение 10 - 15 мин поднять давление перед соплами эжектора до номинального значения 0,60 МПа (6,0 кгс/см 2);

г) создать вакуум в деаэраторе 95 - 97 %.

3.3.3. Включить в работу подогреватель недеаэрированной воды ПНВ, для этого необходимо:

а) открыть задвижку 16 на подводе пара в ПНВ, при этом необходимо следить за температурой воды на выходе из подогревателя, которая не должна превышать 35 °С (по условиям работы водоподготовительной установки);

б) повысить температуру воды на выходе из подогревателя до 30 - 35 °С дистанционным открытием регулирующего клапана РКТ-1 на подаче пара в подогреватель;

в) проворить работу подогревателя;

г) при недостаточном нагреве воды проверить схему отвода неконденсирующихся газов, а при повышении уровня до максимально допустимого значения проверить схему отвода конденсата;

д) проверить работу регулятора температуры недеаэрированной воды, для чего, дистанционно прикрывая регулирующий клапан РКТ-1, понизить температуру воды на выходе из подогревателя до минимально допустимого значения, затем регулятор переключить на автоматическую работу, после чего регулирующий клапан должен начать открываться. Аналогично проверить работу автоматического регулятора при максимально допустимой температуре.

3.3.8. Контролируя давление на стороне всасывания сетевых насосов, плавно увеличить в деаэратор расход недеаэрированной воды до среднесуточного значения одновременным открытием регулирующего клапана РКР на недеаэрированной воде и задвижки 19. Система автоматического регулирования при этом должна поддерживать регулируемые параметры в заданном диапазоне.

Примечани я : 1. При пуске установки (см. рис. ) с опорожненным баком-аккумулятором включать в работу подпиточный насос НП следует только после набора уровня воды в баке-аккумуляторе выше минимально допустимого значения на 1,0 м, после чего подать перегретую воду в деаэратор. 2. Включение в параллельную работу второго деаэратора (установки рис. и ) производится аналогично включению в работу первого деаэратора в соответствии с пп. , , - .

3.4. Обслуживание деаэрационной установки

а) регулярно, не реже двух раз в смену, обходить оборудование деаэрационной установки, записывать в оперативный журнал все операции, проводимые с оборудованием; записывать в суточную ведомость основные параметры режима работы деаэрационной установки;

б) следить за нормальной работой контрольно-измерительных приборов, средств автоматики;

в) при обнаружении отклонений в показаниях контрольно-измерительных приборов от требуемых значений необходимо выяснить причину и принять меры к их устранению;

г) производить запись в журнале дефектов о неполадках в работе деаэрационной установки, устранение которых силами вахтенного персонала является невозможным;

д) осуществлять ежесменное опробование электрической схемы сигнализации и делать соответствующие записи в оперативном журнале;

е) следить за нормальной работой подпиточных насосов, регулярно пополняя смазку подшипников, следить за вибрацией электродвигателя и насоса, устранять повышенные протечки воды через уплотнения вала насоса. Периодически чередовать в работе резервный и рабочий насосы. Опробование в работе устройств автоматического включения резерва насоса (АВР), а также чередование насосов в работе производить согласно имеющемуся на ТЭЦ графику;

ж) периодически продувать водомерные стекла;

з) периодически (один раз в две недели) проверять исправность перемычки аварийной подпитки 21 расхаживанием задвижек;

и) не реже двух раз в смену определять содержание кислорода и свободной углекислоты в подпиточной воде на стороне нагнетания подпиточных насосов после перемычки аварийной подпитки.

Для деаэрационных установок, не прошедших испытания, контролируемые параметры рекомендуется выдерживать в указанном диапазоне:

Температуру недеаэрированной воды, поступающей в деаэраторы, 30 - 35 °С, при этом производительность деаэратора близка к номинальной. При повышении температуры недеаэрированной воды производительность деаэратора увеличивается, но не более чем до 120 % номинальной производительности. При понижении температуры недеаэрированной воды производительность уменьшается;

Давление в деаэраторе 0,0075 - 0,06 МПа (0,075 - 0,5 кгс/см 2);

Нагрев воды в деаэраторе 15 - 25 °С. Максимальный нагрев воды в деаэраторе при производительности менее номинальной превышает 25 °С;

Температуру греющей среды (перегретой воды) в пределах 65 - 120 °С;

Давление на стороне нагнетания подпиточного насоса не менее 95 % номинального значения (режим перегрузки насоса). При давлении менее 98 % включить в работу резервный насос;

Давление пара перед соплами эжектора 0,5 - 0,7 МПа (5,0 - 7,0 кгс/см 2). Нагрев охлаждающей воды в эжекторе ЭП-3-25/75 при этом должен составлять 5 - 10 °С. За пределами указанного диапазона нагрева работать не рекомендуется, так как при меньшем нагреве происходит эрозионный износ трубок эжектора из-за больших скоростей воды в трубках, а при большем - запаривается эжектор.

3.5. Останов деаэрационной установки

3.5.1. Перед плановым остановом деаэрационной установки необходимо накопить запас деаэрированной воды - полный располагаемый объем аккумуляторных баков.

3.5.2. После получения распоряжения о предстоящем останове подготовить к работе перемычку аварийной подпитки 21;

Закрыть контрольный кран 20;

Открыть задвижку 15.

3.5.3. Для теплосетей с выносными аккумуляторными баками (см. рис. и ) предупредить персонал, обслуживающий узел подпитки от аккумуляторных баков, о предстоящем увеличении расхода воды на подпитку от аккумуляторных баков.

3.5.4. Плавно прикрывая регулирующий клапан, уменьшить расход недеаэрированной воды в деаэраторы до 30 % номинальной производительности. При этом система автоматического регулирования должна выдерживать регулируемые параметры в заданных пределах. При понижении давления в обратном коллекторе теплосети ниже допустимого и невозможности повысить давление путем увеличения расхода воды от аккумуляторных баков подать на подпитку теплосети химически очищенную недеаэрированную воду через перемычку аварийной подпитки.

3.5.5. Отключить деаэратор по перегретой воде, для этого в схемах (см. рис. и ) закрыть регулирующий клапан РКТ-2 и задвижку 18 на перегретой воде, а в схеме (см. рис. ) отключить подогреватель ППВ по пару и затем по воде.

3.5.6. Отключить эжектор по пару, закрыв задвижку 17 на подводе пара к эжектору.

3.5.7. Отключить деаэратор по недеаэрированной воде, закрыв:

Регулирующий клапан РКР;

Задвижки перед эжектором и помимо эжектора на недеаэрированной воде.

Если в результате проделанных операций обслуживающему персоналу не удается выяснить причину повышения содержания кислорода в деаэрированной воде, то дальнейшую наладку должен проводить специально подготовленный персонал в соответствии с рекомендациями приложения .

3.6.13. При появлении гидравлических ударов необходимо прекратить поступление перегретой воды в деаэратор, закрыв регулирующий клапан РКТ-2 на трубопроводе перегретой воды. Причиной возникновения гидравлических ударов в работающем деаэраторе, как правило, является недогрев воды в деаэраторе до температуры насыщения, т.е. повышения давления в деаэраторе без повышения температуры деаэрированной воды. После закрытия регулирующего клапана РКТ-2 персонал должен выяснить причину повышения давления в деаэраторе, для этого проверить:

а) режим работы эжектора (давление пара перед эжектором и нагрев охлаждающей воды в эжекторе установить в соответствии с п. );

б) отсутствие присосов воздуха в вакуумную систему (закрыть вентили на дренажных, водомерных стеклах и т.д.);

в) работу эжектора «на себя», для этого после отключения деаэратора по перегретой воде (закрыв регулирующий клапан РКТ-2 и задвижку 18) закрыть задвижку на линии отсоса из деаэратора. Исправный эжектор при работе «на себя» при давлении пара перед соплами эжектора 0,5 - 0,6 МПа (5,0 - 6,0 кгс/см 2) и более должен создавать разрежение 96 - 91 %. Если эжектор не создает указанного разрежения, то необходимо проверить заполнение гидрозатворов эжектора водой, для этого отключить эжектор по пару и затем после повышения давления во всасывающем патрубке эжектора до атмосферного плавно в течение 15 мин повышать давление пара перед соплами эжектора до 0,5 - 0,6 МПа (5,0 - 6,0 кгс/см 2), при этом гидрозатворы заполняются водой. Если после заполнения гидрозатворов водой эжектор не создает требуемого разрежения, то он неисправен и для выявления неисправности необходимо его вскрытие.

3.6.14. При выходе воды из сигнального гидрозатвора 7 (рис. ) и выбросе воды из выхлопного патрубка 3 проверить унос воды отсасываемыми газами из деаэратора. Для предотвращения уноса прикрыть задвижку на линии отсоса из деаэратора на 85 - 95 %. Если при этом выброс воды из эжектора прекратится, то при работе деаэратора задвижку на линии отсоса следует открывать не полностью, а лишь до тех пор, пока давление в деаэраторе и на стороне всасывания эжектора не выровняется.

Рис. 7. Трехступенчатый пароструйный эжектор ЭП-3-25/75:

а - схема расположения патрубков; б - зависимость давления (абсолютного) всасывания от расхода
воздуха в отсасываемой эжектором ЭП-3-25/75 смеси при отсасывании паровоздушной смеси с
температурой 20,4 ° С и абсолютном давлении рабочего пара 0,51 МПа (5,1 кгс/см 2);
1 - патрубок подвода паровоздушной смеси; 2 - патрубок подвода рабочего пара; 3 - патрубок выхода
газов в атмосферу; 4 - патрубок отвода конденсата; 5 и 6 - патрубки подвода и отвода охлаждающей
воды; 7 - патрубок для сигнализации переполнения водой третьей ступени эжектора

Если при выбросе воды из выхлопного патрубка давление на стороне всасывания эжектора будет меньше, чем давление в деаэраторе над барботажной тарелкой, на 0,02 МПа (0,2 кгс/см 2), то из этого следует, что деаэратор заполнен водой и вода из деаэратора поступает в эжектор. Причины заполнения деаэратора водой приведены в приложении .

4. ДЕАЭРАЦИОННАЯ УСТАНОВКА С АТМОСФЕРНЫМИ ДЕАЭРАТОРАМИ (рис. )

Рис. 8. Схема деаэрационной установки с атмосферными деаэраторами:

1 - из водоподготовительной установки; 2 - деаэрационная колонка с деаэраторным баком; 3 - защитный гидрозатвор; 4 - бак-аккумулятор;
5 - из коллектора 1,2 - 2,5 кгс/см 2 ; 6 - в промливневую канализацию; 7 - в основной цикл ТЭЦ; 8 - в атмосферу; 9 - 13 - оперативная арматура;
14 - контрольный кран; 15 - на химический анализ; 16 - из теплосети; 17 - на сторону всасывания сетевых насосов;
18 - от насосов технической воды; 19 - перемычка аварийной подпитки; РКДД - регулирующий клапан давления в деаэраторах;
РКТ - регулирующий клапан температуры недеаэрированной воды; ОДВ - охладитель деаэрированной воды; ОВ - охладитель выпара
(остальные обозначения см. рис. и )


4.1.2. Проверить закрытие задвижек на трубопроводах:

Подвода недеаэрированной воды перед охладителем деаэрированной воды (задвижка 10);

Опорожнения деаэраторных баков;

Подвода пара к деаэраторам (задвижка 9) и к подогревателю недеаэрированной воды (задвижка 11);

Нагнетания подпиточных насосов НП-1;

Перепуска деаэрированной и недеаэрированной воды помимо охладителя деаэрированной воды;

Перепуска воды помимо регулируемых клапанов РКР и РКУ.

4.1.3. Проверить закрытие вентилей на дренажах паропроводах перед задвижками 9 и 11.

4.1.4. Закрыть все регулирующие клапаны, не находящиеся в работе.

4.1.5. Открыть задвижки на трубопроводах выпаров в атмосферу всех деаэраторов.

4.1.6. Открыть на 30 % задвижку 12 на недеаэрированной воде помимо охладителей выпаров.

4.1.7. Проверить открытие задвижек на трубопроводах:

Подвода выпара в охладители выпаров всех деаэраторов;

Охлаждающей воды перед охладителями выпаров и после них;

Уравнительных по пару и воде;

Подвода недеаэрированной воды перед каждым деаэратором;

Отвода деаэрированной воды из деаэраторов;

Подвода пара перед каждым деаэратором;

Перед регулирующими клапанами РКР и РКУ и после них;

Деаэрированной воды перед и после ОДВ;

Недеаэрированной воды перед и после ОДВ;

Всасывания подпиточных насосов.

4.2. Пуск деаэрационной установки (при подпитке теплосетей в период пуска от аккумуляторных баков)

4.2.1. Включить в работу регулятор давления в деаэраторах, после чего клапан РКД должен открыться.

4.2.2. Прогреть паропровод подвода пара в деаэраторы до задвижки 9, открыв дренажный вентиль перед задвижкой.

4.2.3. Прогреть деаэраторы, плавно открывая задвижку 9. После открытия задвижки 9 закрыть дренажный вентиль перед нею.

При повышении давления в деаэраторах до 0,125 МПа (1,25 кгс/см 2) клапан РКДД должен автоматически закрыться. В случае повышения давления в деаэраторах более 0,125 МПа (1,25 кгс/см 2) открытие задвижки 9 прекратить, если при этом рост давления не остановится, то задвижку 9 частично прикрыть.

4.2.4. Открыть задвижку 10 на недеаэрированной воде перед ОДВ. При заполнении деаэраторных баков до 0,5 максимально допустимого уровня включить в работу подпиточный насос НП-1. После проверки работы насоса открыть задвижку на стороне нагнетания насоса.

Примечани е . При пуске деаэрационной установки с наполненными деаэраторными баками (при уровне воды в баках более 0,5 максимально допустимого значения уровня) перед подачей в деаэраторы недеаэрированной воды следует включать в работу подпиточный насос НП-1.

4.2.5. Подать в деаэраторы недеаэрированную воду (не более 30 % номинальной производительности) открытием регулирующего клапана РКР, после чего задвижку 9 на подводе пара к деаэраторам открыть полностью (если она не полностью была открыта).

4.2.6. Проверить работу автоматического регулятора уровня воды в деаэраторных баках. Для этого открытием регулирующего клапана РКУ на подпитке теплосети понизить уровень воды в деаэраторных баках до минимально допустимого значения (при этом следует контролировать давление на стороне всасывания сетевых насосов). Затем регулятор уровня поставить на автоматическую работу, после чего регулирующий клапан РКУ должен автоматически закрыться. Аналогично проверить работу регулятора уровня при максимально допустимом уровне в баках.

4.2.7. Включить в работу подогреватель недеаэрированной воды ПНВ, для этого необходимо:

а) прогреть паропровод подачи пара в ПНВ до задвижки 10, открыв дренажный вентиль перед задвижкой;

б) открыть задвижку 10 на подводе пара в ПНВ, после чего дренажный вентиль перед задвижкой закрыть;

в) дистанционным открытием клапана РКТ повысить температуру на выходе из подогревателя ПНВ до требуемого в п. значения;

г) проверить работу подогревателя. При недостаточном нагреве воды в подогревателе проверить схему отвода неконденсирующихся газов, а при повышении уровня до максимально допустимого значения проверить схему отвода конденсата.

4.2.8. Проверить работу регулятора температуры недеаэрированной воды, для этого, прикрывая регулирующий клапан РКТ на подводе пара к подогревателю, понизить температуру воды на выходе из подогревателя для деаэраторов (см. рис. ) до 94 °С, а для деаэраторов (см. рис. ) до 89 °С. Затем регулятор переключить на автоматическую работу, после чего регулирующий клапан должен начать закрываться. Аналогично проверить работу автоматического регулятора при максимально допустимой температуре.

4.2.9. Закрыть задвижки на выпаре в атмосферу всех деаэраторов.

4.2.10. Плавно увеличить расход недеаэрированной воды в деаэраторы до среднесуточного значения открытием регулирующего клапана РКР, следя за давлением на стороне всасывания сетевых насосов. Средства автоматического регулирования при этом должны поддерживать регулируемые параметры в заданных пределах.

4.2.11. В установившемся режиме (через 1 ч после пуска) определить содержание кислорода и свободной углекислоты в подпиточной воде на стороне нагнетания подпиточных насосов НП-1.

4.3. Подключение одного деаэратора к параллельно работающим деаэраторам

4.3.1. Убедиться в выполнении пп. - , и .

4.3.2. Дать заявку на включение в работу КИП.

4.3.3. Проверить закрытие задвижки на линии опорожнения деаэраторного бака.

4.3.4. Открыть задвижку на выпаре в атмосферу.

4.3.5. Проверить открытие задвижки на выпаре к охладителю выпара.

4.3.6. Включить охладитель выпара по охлаждающей воде, открыв задвижки до и после охладителя выпара.

4.3.7. Подать пар в деаэратор, открыв задвижку на подводе пара к деаэратору.

4.3.8. Открыть задвижку на уравнительном трубопроводе по пару.

4.3.9. Подать в деаэратор воду, открыв задвижку на недеаэрированной воде перед деаэратором на 20 - 30 %.

Примечани е . При подключении деаэратора с заполненным деаэраторным баком к параллельно работающим деаэраторам перед подачей в деаэратор недеаэрированной воды следует открыть задвижки на уравнительном трубопроводе по воде и на отводе деаэрированной воды из деаэратора.

4.3.10. При выравнивании уровня воды с другими деаэраторами открыть задвижку на уравнительном трубопроводе по воде.

4.3.11. Открыть задвижку на отводе деаэрированной воды из деаэратора.

4.3.12. Полностью открыть задвижку на подводе недеаэрированной воды в деаэратор.

4.3.13. Закрыть задвижку на выпаре в атмосферу.

4.4. Обслуживание деаэрационной установки

4.4.1. При обслуживании деаэрационной установки следует руководствоваться пп. и .

д) уровень воды в деаэраторных баках должен поддерживаться на середине максимально допустимого значения ±0,5 м;

е) расход охлаждающей воды через охладители выпаров должен равняться расчетному значению. При отсутствии расходомера расчетный расход охлаждающей воды определяется приближенно по перепаду давления на входе воды в охладитель выпара и выходе из него в соответствии с паспортными данными охладителя выпара.

4.5. Останов одного деаэратора при параллельно работающих деаэраторах

4.5.1. Установить расход недеаэрированной воды в деаэраторы в соответствии с производительностью остающихся в работе деаэраторов прикрытием регулирующего клапана РКР.

4.5.2. Закрыть задвижки на трубопроводах перед деаэратором в такой последовательности:

На недеаэрированной воде;

На подводе пара в деаэратор;

На отводе из деаэратора деаэрированной воды;

На уравнительном трубопроводе по воде;

На уравнительном трубопроводе по пару;

На охлаждающей воде перед охладителем выпара и после него.

4.5.3. Опорожнить бак (при необходимости), открыв задвижку на трубопроводе опорожнения.

4.6. Останов деаэрационной установки

4.6.1. Перед плановым остановом деаэрационной установки создать запас деаэрированной воды, заполнив аккумуляторные баки.

4.6.2. После получения распоряжения о предстоящем останове подготовить к работе перемычку аварийной подпитки 19; закрыть контрольный кран 14; открыть задвижку 13.

4.6.3. Предупредить персонал, обслуживающий узел подпитки от аккумуляторных баков, о предстоящем увеличении расхода воды от аккумуляторных баков.

4.6.4. Плавно, следя за давлением во всасывающем коллекторе сетевых насосов, уменьшить расход недеаэрированной воды в деаэраторы до 15 - 20 % номинальной производительности прикрытием регулирующего клапана РКР. При этом система автоматического регулирования должна выдержать регулируемые параметры в заданных пределах.

При понижении давления во всасывающем коллекторе ниже допустимого и невозможности повысить давление путем увеличения расхода воды от аккумуляторных баков подать на подпитку теплосети химически очищенную недеаэрированную воду через перемычку 19.

При повышении давления в деаэраторах более 0,125 МПа (1,25 кгс/см 2) разгрузку деаэраторов по воде прекратить, при необходимости увеличить в деаэраторы расход недеаэрированной воды для восстановления давления в деаэраторах.

4.6.5. Отключить по пару подогреватель недеаэрированной воды.

4.6.6. Отключить по пару деаэраторы, закрыв регулирующий РКД-1 и задвижку 9 на подводе пара к деаэраторам.

4.6.7. Отключить деаэраторы по воде, закрыв регулирующий клапан РКР на подводе недеаэрированной воды в деаэраторы и задвижку 10 перед охладителем деаэрированной воды.

4.6.8. Остановить подпиточный насос.

4.6.9. Закрыть задвижки на стороне нагнетания подпиточных насосов.

4.6.10. При необходимости опорожнить деаэраторные баки, открыв задвижки на трубопроводах опорожнения баков.

4.7. Действия персонала при нарушении режима и неполадках в обслуживаемом оборудовании

4.7.1. Наиболее опасными нарушениями режима работы деаэрационной установки являются:

Превышение допустимого давления в деаэраторах;

Переполнение водой деаэраторных баков.

4.7.6. При нарушении режима нормальной работы деаэрационной установки обслуживающий персонал должен восстановить контролируемые параметры в соответствии с требуемыми значениями по п. . При этом следует руководствоваться пп. , , - .

4.7.7. При повышении давления в деаэраторах свыше 0,125 МПа (1,25 кгс/см 2) прикрытием регулирующего клапана РКДД понизить давление в деаэраторах до 0,120 МПа (1,20 кгс/см 2). При необходимости прикрыть задвижку 9 (см. рис. ).

4.7.8. При достижении максимально допустимого уровня воды в деаэраторных баках прикрытием регулирующего клапана РКР понизить уровень до номинального значения. При необходимости для понижения уровня прикрыть задвижку за клапаном РКР.

4.7.9. При быстром росте уровня в деаэраторных баках (например, при останове всех насосов подпитки теплосети) уменьшить расход недеаэрированной воды в деаэраторы, контролируя при этом давление в деаэраторах. При повышении давления в деаэраторах более 0,125 МПа (1,25 кгс/см 2) поддерживать достигнутый расход недеаэрированной воды, а после восстановления давления закрыть клапан РКДД и, при необходимости, задвижку перед ним. Затем закрыть клапан РКР и задвижку перед ним.

4.7.10. При выбросе воды через воздушник охладителя выпара следует определить причину, вызвавшую его. Выброс воды может происходить из-за:

Большого уноса влаги из колонки с выпаром, сопровождающимся гидравлическими ударами в трубопроводе выпара. Для предотвращения уноса влаги необходимо уменьшить расход охлаждающей воды через охладители выпаров, приоткрыв задвижку помимо охладителей выпаров. После чего (через 1 ч) проверить содержание кислорода и свободной углекислоты в подпиточной воде;

Засорения трубопровода дренажа охладителя выпара. Признаком засорения трубопровода является понижение температуры дренажа (от 100 °С) до температуры наружного воздуха;

Нарушения плотности трубной системы охладителя выпара. Для определения неплотности следует закрыть задвижку на выпаре перед охладителем выпара. Наличие выброса воды через воздушник или выход воды через трубопровод дренажа указывает на наличие неплотности в трубной системе охладителя выпара.

Приложение 1

1. В деаэрационной установке автоматически регулируются следующие параметры:

Температура недеаэрированной воды (перед атмосферными деаэраторами и перед водоподготовительной установкой для деаэрационных установок с вакуумными деаэраторами);

Давление в атмосферных деаэраторах;

Температура деаэрированной воды на выходе из вакуумного деаэратора;

Уровень воды в подпорном баке, если подпорный бак не является аккумуляторным баком;

Давление во всасывающем коллекторе сетевых насосов.

2. О предельных значениях режимов деаэрационной установки световая и звуковая сигнализация оповещает при:

Повышении и понижении давления во всасывающем коллекторе сетевых насосов;

Понижении давления на стороне нагнетания подпиточных насосов;

Повышении и понижении уровня воды в подпорном баке;

Повышении температуры воды перед водоподготовительной установкой (для вакуумных деаэраторов);

Повышении и понижении давления в атмосферных деаэраторах.

3. Подпиточные насосы должны быть оснащены системой АВР, которая срабатывает при отключении электродвигателя работающего насоса.

Подпиточные насосы, предназначенные для работы в переменных режимах (как правило, насосы, подающие воду на подпитку от аккумуляторных баков), дополнительно должны быть оснащены системой АВР, которая срабатывает при понижении давления на стороне нагнетания работающего подпиточного насоса.

Приложение 2

Вакуумные деаэраторы, выпущенные в период 1968 - 1976 гг., имеют производительность менее проектной. Для доведения производительности деаэратора до проектного значения деаэратор следует реконструировать по разработкам Сибтехэнерго (см. рис. , б ).

Реконструкция требует:

Демонтировать пароперепускной короб в барботажной тарелке; отверстие от короба заглушить рассверленным листом с такой же степенью перфорации, как и барботажная тарелка; короб в тарелке 5 заглушить на 50 %;

Увеличить площадь отверстий в барботажной тарелке в два раза за счет сверления новых отверстий;

В деаэраторах ДВ-800 и ДВ-1200 в межсекционной перегородке вырезать уравнительное отверстие площадью 0,15 м 2 .

Приложение 3

химически очищенная вода;

водопроводная вода;

деаэрированная подпиточная вода;

сетевая вода;

конденсат пара;

задвижка;

регулирующий клапан;

обратный клапан;

измерение температуры;

измерение давления;

измерение уровня;

подвод воды;

отвод воды;

3.6.1 - настоящей Типовой инструкции.

2. Наладку вакуумных деаэраторов должен проводить специально подготовленный персонал.

3. Основные принципы работы деаэраторов:

3.1. В основе процесса деаэрации воды в деаэраторах лежит закон растворимости газа в жидкости, согласно которому содержание растворенного в жидкости газа пропорционально парциальному давлению газа, соприкасающегося со свободной поверхностью жидкости. Закон растворимости газа приемлем для длительно протекающих процессов. Для кратковременных процессов (таким процессом является деаэрация воды в термических деаэраторах) этот закон справедлив лишь для поверхностного слоя воды, непосредственно соприкасающегося с газами.

3.2. В термических деаэраторах для обеспечения процесса деаэрации парциальное давление газов уменьшается до давления, близкого к нулю, путем заполнения деаэратора водяным паром и отвода выделившихся из воды газов.

3.3. Для повышения интенсивности процесса деаэрации в термических деаэраторах увеличивается поверхность взаимодействия воды с паром, для этого поток воды разбивается на тонкие струи или организуется барботажный слой воды путем пропуска пара через слой воды.

4. Основные причины повышенного содержания кислорода в деаэрированной воде (на выходе из деаэратора):

4.1. Режимные факторы, устраняемые обслуживающим персоналом по пп. - настоящей Типовой инструкции.

4.2. Заполнение деаэратора (струйных отсеков) неконденсирующимися газами, вызванное:

Неудовлетворительной работой эжектора;

Повышенными присосами воздуха через неплотности вакуумной системы;

Повышенным содержанием газов, растворенных в недеаэрированной воде, поступающей в деаэратор, и большим поступлением в деаэратор недеаэрированной воды.

4.3. Переполнение деаэратора водой.

4.4. Присосы воздуха в отбираемую для химического анализа воду в пробоотборном трубопроводе.

5. Порядок проведения наладки режима деаэрации:

5.1. Убедиться в выполнении обслуживающим персоналом пп. - настоящей Типовой инструкции. Если пробоотборный трубопровод работает под разрежением, то опрессовку его производить в следующем порядке:

а) отключить деаэратор по перегретой воде и повысить давление в деаэраторе до атмосферного, отключив эжектор по пару. Последующие операции выполнять по п. настоящей Типовой инструкции;

б) если при повышении давления в деаэраторе до атмосферного из пробоотборного трубопровода прекратится поступление воды, то опрессовать пробоотборный трубопровод следует охлаждающей водой. Давление охлаждающей воды при этом должно быть больше высоты столба воды в пробоотборном трубопроводе.

Вакуумная система заполняется водой и в деаэраторе создается избыточное давление 0,2 МПа (2,0 кгс/см 2).

5.7. Определение перегрузки эжектора газами, выделившимися в деаэраторе из деаэрируемой воды, производится путем увеличения расхода в деаэратор недеаэрированной воды до максимально допустимого значения. При этом целесообразно измерять расход выхлопных газов в выхлопном патрубке эжектора. Для измерения могут быть применены воздухомеры конструкции ХТГЗ, ЛМЗ, ВТИ и др.

Перегрузка эжектора определяется в следующем порядке:

а) включить в работу деаэратор согласно пп. - настоящей Типовой инструкции.

При минимальном расходе недеаэрированной воды (в деаэратор поступает только охлаждающая вода эжектора) произвести измерение контролируемых параметров, которые должны выдерживаться в соответствии с п. . настоящей Типовой инструкции, измерить температуру в конце струйного отсека согласно п. данного приложения и определить содержание кислорода в деаэрированной воде (на выходе из деаэратора) не менее трех раз в течение опыта;

б) увеличивая расход недеаэрированной воды в деаэратор на 100 т/ч в каждом опыте, определить, при каком расходе недеаэрированной воды эжектор начинает перегружаться газами.

Если расход выхлопных газов эжектора с увеличением расхода недеаэрированной воды в деаэраторе меняется пропорционально расходу недеаэрированной воды, то весь отсасываемый газ поступает в деаэратор с недеаэрированной водой, а присосы воздуха в вакуумную систему отсутствуют.

Если с увеличением расхода недеаэрированной воды в деаэратор в несколько раз (например, в два раза) расход выхлопных газов эжектора увеличится менее чем в два раза при условии, что качество деаэрированной воды осталось прежним, то из этого следует, что в деаэратор поступает большое количество газов через неплотности вакуумной системы.

Перегрузка эжектора может быть определена также по расходу выхлопных газов эжектора. Согласно рис. , б , эжектор перегружается при расходе 100 кг/ч.

5.8. При перегрузке эжектора газами, выделившимися в деаэраторе из воды, следует увеличить производительность газоотсасывающего устройства, установив дополнительный эжектор, или перевести существующий эжектор на пар более высокого давления. Предельное давление пара перед соплами ЭП-3-25/75 1,0 МПа (10,0 кгс/см 2).

. 16


Подпитка теплосети на некоторых ТЭЦ достигает 2-4 тыс. т воды в час. Для деаэрации воды используется морально устаревшая техника, созданная в первой половине или в середине 20-го века. Это атмосферные деаэраторы ДА и ДСА и вакуумные деаэраторы типа ДСВ - струйные и струйно-барботажные деаэраторы, работающие на экстенсивных принципах тепло- и массообмена между деаэрируемой водой и деаэрирующим агентом - паром. В вакуумных деаэраторах типа ДСВ-800 и ДСВ-400 в качестве деаэрирующего агента применяется вода, перегретая выше температуры кипения при расчетном вакууме. При снижении давления перегретая вода вскипает, образуя пар, который барботируется через слой деаэрируемой воды и контактирует в противотоке со струями деаэрируемой воды, диспергируемыми при прохождении дырчатых тарелок.

Недостатки работы типовых вакуумных деаэраторов ДСВ:

■ резкое снижение качества деаэрации при нагрузках деаэратора выше 50% (по общему потоку воды);

■ снижение качества деаэрированной воды при переменных нагрузках;

■ перерасход электроэнергии на перекачку греющей воды из теплосети и обратно в сеть через деаэраторы при снижении давления воды до атмосферного;

■ потери пара на обеспечение вакуума паровыми эжекторами;

■ высокие затраты труда на обслуживание и ремонт большого количества деаэраторов, работающих при малых нагрузках.

Реконструкция деаэраторов

Решение проблемы деаэрации подпиточной воды на ТЭЦ с открытыми системами теплоснабжения рассмотрим на примере ТЭЦ-5 г. Омска .

На ТЭЦ-5 установлено 8 вакуумных деаэраторов типа ДСВ (ДСВ-800 - 7 шт. и ДСВ-400 - 1 шт.). Потери воды в теплосети составляют 1600 т/ч, которые должны восполняться деаэрируемой водой. В деаэраторы поступает 1600 т/ч деаэрируемой воды с температурой 20 О С и 1400 т/ч греющей воды с температурой 100 О С из теплосети. Суммарная производительность деаэраторов и общая подпитка теплосети составляет 3000 т/ч (53% деаэрируемой воды и 47% греющей). Температура деаэрированной воды - 57-62 О С. Процесс деаэрации происходит при глубоком вакууме.

Для осуществления этого проекта:

■ из деаэрационного бака деаэратора ДСВ-800 удаляют все устройства;

■ изготавливают и устанавливают над баком центробежновихревой деаэратор ДЦВ-800;

■ в верхней части бака устанавливают диспергаторы воды, поступающей в бак из ДЦВ-800;

■ на выпарном трубопроводе устанавливают подогреватель низкого давления в качестве охладителя выпара;

■ перед деаэратором устанавливают подогреватель деаэрированной воды, способный нагреть воду до 85 О С.

Деаэрационная установка работает без подачи в деаэратор пара или греющей воды, т.е. на, так называемом, «начальном эффекте». Вода вскипает, образуя выпар, с которым удаляются агрессивные газы. Схема реконструкции предусматривает также использование конденсата выпара в качестве обессоленной воды для паровых колов. Охлаждение воды в деаэраторе на 10 О С за счет образования выпара обеспечивает 16 кг конденсата на каждую тонну деаэрированной воды.

В результате реконструкции достигается следующее:

■ вместо восьми деаэраторов в работе остаются только два. Подпитка теплосети через деаэраторы сокращается с 3000 до 1600 т/ч (за счет ликвидации рециркуляции сетевой воды из теплосети в деаэраторы). Происходит перераспределение потоков греющего пара без увеличения количества отбираемого от турбин пара;

■ повышается температура нагреваемой в деаэраторе воды до 85 О С, вместо 50-65 О С, что приведет к уничтожению бактерий, находящихся в подпиточной воде;

■ обеспечивается высокое качество деаэрированной воды;

■ деаэратор может работать, как агрегат двойного назначения (деаэрация воды и выработка конденсата, один деаэратор выработает 12800 кг/ч конденсата, два - 25600 т/ч. При повышении температуры деаэрируемой воды можно увеличить количество получаемого конденсата).

Другим примером эффективного решения проблемы деаэрации является реконструкция деаэрационной установки в Кировской районной котельной г. Омска в 2008 г. Неработающий сетевой атмосферный деаэратор ДСА-300 был реконструирован в вакуумный производительностью 600 т/ч по указанной ниже схеме (рис. 2).

Деаэрируемая вода нагревается до 85 О С в паровом подогревателе 6, подается в ДЦВ-600 (первую ступень деаэрационной установки), где удаляется 98% агрессивных газов. Далее, частично деаэрированная вода, подается в капельный деаэратор 2, где удаляются остатки агрессивных газов (до значений ниже установленных норм). Деаэрация воды происходит за счет мгновенного испарения воды, перегретой выше температуры кипения, соответствующей вакууму в деаэраторе. Выпар поступает в контактный охладитель выпара (ОВК) 3, где конденсируется потоком деаэрируемой воды, поступающей из системы холодного водоснабжения. Из того же водопровода вода подается в водоструйный эжектор 5 (ЭВ-100 с расходом рабочей воды 100 т/ч). Вода из ОВК и из ЭВ-100 поступает в бак 8 (бак-га- зоотделитель), после которого насосом 7 подается в ДЦВ-600 через паровой подогреватель 6. Деаэрированная вода подается насосом 9 в аккумуляторные баки или непосредственно в обратный трубопровод теплосети.

После завершения реконструкции неудовлетворительно работавшие атмосферные форсуночные деаэраторы были отключены.

Ранее (в 2002 г.) аналогичная реконструкция сетевого атмосферного деаэратора в вакуумный с установкой ОВК, с увеличением производительности до 600 т/ч произведена на Черепетской ГРЭС (г. Суворов , Тульская область).

Решение проблемы кавитации насосов

Ранее проблема кавитации насосов, откачивающих деаэрированную воду из вакуумного деаэратора, решалась за счет установки деаэратора на отметке, превышающей отметку установки насоса на 14-17 м. Но в случае с деаэратором в Кировской котельной г Омска отметка установки деаэратора составила 5 м. Средний уровень воды в деаэраторном баке соответствует отметке 7 м. Всасывающий патрубок подпиточного насоса находился под вакуумом, что могло привести к кавитации и к прекращению подачи воды. Решение было найдено за счет рециркуляции 10% воды от нагнетательного патрубка насоса к рабочему колесу насоса. Трубопровод рециркуляции воды с соплом на конце был подведен к рабочему колесу насоса (рис. 3). Сопло разбивает воздушный или паровой пузырь перед рабочим колесом, что предотвращает завоздушивание или запаривание насоса (кавитацию). Такое решение позволяет работать откачивающему насосу при глубоком вакууме в баке-аккумуляторе деаэрационной установки, не поднимая бак на значительную высоту.

Ограничение области применения вакуумных деаэраторов

Согласно Постановлению Главного государственного санитарного врача РФ от 7 апреля 2009 г № 20 «Об утверждении СанПиН 2.1.4.2496-09» при открытой системе теплоснабжения деаэрация должна проводиться при температуре более 100 О С. Данное постановление трактуется как запрет на проектирование и эксплуатацию вакуумных деаэраторов при открытой системе теплоснабжения, что наносит экономике страны огромный экономический ущерб. Большинство ТЭЦ имеют вакуумную систему деаэрации. Они должны или реконструировать систему водоподготовки, или отказаться от деаэрации подпиточной воды, что приведет к коррозионному разрушению трубопроводов тепловых сетей и значительным затратам на их ремонт

Что могло послужить причиной выхода в свет такого постановления, и были ли на то причины?

Причины были. Например, в жилых домах возле котельной пос. Африканда Мурманской области (недалеко от АЭС в г. Полярные Зори) в 1999 г. при включении крана горячей воды можно было наблюдать, что из него вытекала жидкость, напоминающая в первые минуты деготь, затем воду серого цвета и только через несколько минут светлую воду.

В котельной с водогрейными котлами эксплуатировался вакуумный деаэратор ДСВ-100, осуществляющий нагрев деаэрируемой воды за счет смешения ее с греющей сетевой водой. Деаэрированная вода с температурой не более 60 О С поступала в аккумуляторный бак, из которого подавалась потребителям. Насосы рециркуляции воды водогрейных котлов были демонтированы, что не позволяло держать температуру греющей воды за котлами выше, чем предусматривал график отпуска тепла 95/70 О С (рециркуляционный насос позволяет, не нарушая температурного графика отпуска тепла, иметь большую температуру воды за котлом для работы деаэратора).

Из-за недостаточно высокой температуры деаэрированной воды в аккумуляторном баке развивались микроорганизмы, которые за несколько лет эксплуатации образовали на стенках бака колонии в виде черной грязи толщиной в несколько сантиметров. Эта грязь и попадала в систему ГВС.

Но даже в таких котельных можно эффективно решить все вопросы - восстановить рециркуляционные насосы и обеспечить достаточный нагрев воды для работы деаэраторов. Если бы вакуумные деаэраторы работали при температуре 80 О С, то не образовался бы такой слой колоний микроорганизмов. Можно было бы обязать периодически дезинфицировать аккумуляторные баки горячей водой с температурой 100 О С.

Другим примером (трагическим, но не показательным) является нарушение санитарно-эпидемиологических норм при подаче воды в систему ГВС в г. Верхняя Пышма летом 2007 г. в результате чего легионелезом было инфицировано 73 человека, пятеро скончались. Причиной стало нарушение технических регламентов и подача горячей воды с температурой ниже нормативной в трубопровод, который до этого был отключен от системы ГВС на срок 10 дней (деаэраторы в этом случае были не причем).

В большинстве же случаев причиной попадания микроорганизмов в систему горячего теплоснабжения являются не вакуумные деаэраторы, а аккумуляторные баки, эксплуатируемые без надзора. Микроорганизмы попадают в аккумуляторный бак с атмосферным воздухом, который заполняет его при периодическом опорожнении бака. Микроорганизмы осаждаются на стенках и размножаются, находясь над уровнем воды, когда и температура невысокая, и достаточно кислорода и влаги.

Следует заметить, что в атмосферных деаэраторах, несмотря на то, что они работают при температуре 104 О С, деаэрируемую воду перед подачей в аккумуляторные баки охлаждают до 70-80 О С, и микроорганизмы все равно могут развиваться в аккумуляторных баках, если их периодически не дезинфицировать.

Действительно ли при 80 О С микроорганизмы не прекращают свое развитие и продолжают образовывать колонии? Если бы в Постановлении было указано 80 О С вместо «более 100 О С», это могло спасти прогрессивное направление деаэрации - вакуумную деаэрацию (но только при условии развития новых способов вакуумной деаэрации вместо устаревшей).

Для решения возникшей проблемы применения вакуумных деаэраторов предлагается следующее:

■ разрешить работу вакуумных деаэраторов для деаэрации воды в системах с открытым водоразбором с температурой нагрева деаэрируемой воды до 80-85 О С;

■ обеспечить контроль наличия бактерий в системе теплоснабжения и периодическую дезинфекцию аккумуляторных баков;

■ восстановить (или установить) на водогрейных котлах рециркуляционные насосы, позволяющие повысить потенциал греющей воды для собственных нужд без нарушения температурного графика теплопотребления;

■ при отсутствии аккумуляторных баков деаэрированной воды не ограничивать степень нагрева воды перед вакуумными деаэраторами значением 80 О С (можно снизить до 70 О С, т.к. в нагретой до этой температуры проточной воде меньше микроорганизмов, чем в холодной водопроводной);

■ при решении вопроса понижения температуры воды в деаэраторах со 101 до 80 О С учитывать, что часть теплосетей работают по температурному графику 150/70 О С, т.е. независимо от температуры подпиточной воды, температура воды в теплосети в зимний и осенне-весенний период превышает 100 О С.

Бравиков А. М.

Экономичность вакуумных деаэраторов во многом зависит от подогрева в деаэраторе деаэрируемой воды. Чем меньше подогрев воды в деаэраторе, тем экономичнее режим деаэрации. Однако подогрев воды в деаэраторе влияет не только на экономичность режима, но и на качество деаэрации, а конкретнее - чем больше подогрев воды в деаэраторе, тем лучше качество деаэрации.
Одним из требований, предъявляемых к работе вакуумных деаэраторов, является обеспечение содержания кислорода в деаэрированной воде не более 50 мкг/кг. В этой связи оптимальным нагревом воды в деаэраторе является минимальный нагрев, при котором обеспечивается требуемое содержание кислорода в деаэрированной воде.
Опыт эксплуатации вакуумных деаэраторов показывает, что типовые вакуумные деаэраторы на разных объектах имеют разные технические характеристики. К числу таких характеристик может быть отнесен оптимальный нагрев воды в деаэраторе. Согласно оптимальный нагрев воды на разных объектах составляет от 5 до 15°С. Кроме того, опыт эксплуатации вакуумных деаэраторов показывает, что оптимальный нагрев может составлять 5 - 25°С.
На рис. 1 показано содержание кислорода в деаэрированной воде в зависимости от нагрева воды в деаэраторе (дегазационные характеристики деаэраторов), полученное экспериментально в одинаковых температурных и гидродинамических режимах на деаэраторах, установленных на разных объектах.

Рис. 1. Зависимости содержания кислорода в деаэрированной воде от нагрева воды в деаэраторах ДВ-400 и ДВ-800:
1 - ТЭЦ Горьковского автозавода; 2 - Усть-Каменогорская ТЭЦ; 3 - тепловые сети г. Курска; 4 - Новосибирская ТЭЦ-5

Кроме того, опыт эксплуатации вакуумных деаэраторов показывает, что в процессе эксплуатации дегазационная характеристика деаэратора может изменяться при неизменных температурных и гидродинамических параметрах режима работы деаэратора. При этом оптимальный нагрев воды в деаэраторе может как увеличиваться, так и уменьшаться. Причина, вызвавшая изменение дегазационной характеристики, как правило, остается неизвестной, так как теоретические положения о термической деаэрации не дают оценки данному явлению .
Вопрос изменения дегазационной характеристики деаэратора при неизменных температурных и гидродинамических параметрах в открытой печати впервые обсуждался в , где высказывалась точка зрения, что причиной изменения дегазационной характеристики деаэратора при неизменных температурных и гидродинамических параметрах режима работы является изменение кавитационной прочности деаэрируемой воды. Данное свойство воды характеризует условия, при которых в воде зарождаются и растут газовые пузырьки, и оно подробно рассмотрено в специальной литературе, например, в . Согласно теории кавитации интенсивность выделения растворенных газов из воды за счет образования пузырьков зависит от кавитационной прочности воды. Чем меньше кавитационная прочность воды (в некоторых источниках она называется “объемная прочность воды”), тем интенсивнее из нее выделяются газы за счет образования пузырьков и, следовательно, тем меньше минимально необходимый нагрев воды в деаэраторе.
Из теории кавитации известно, что кавитационная прочность воды зависит от многих факторов, например, от механических микроскопических примесей в жидкости, от присутствия растворенных солей в жидкости, от обработки воды давлением, от воздействия космических лучей, от гидродинамического состояния потока (от турбулентности) и др. При определении дегазационной характеристики деаэратора факторы, влияющие на кавитационную прочность деаэрируемой воды, как правило, не учитываются, а, следовательно, и кавитационная прочность деаэрируемой воды тоже не учитывается. Однако кавитационная прочность на разных объектах может быть различной.


Рис. 2. Схема реконструированных деаэраторов ДВ-400 и ДВ-800:
1 - корпус; 2, 3, 4, 5 - тарелка; 6 - патрубок подвода недеаэри- рованной воды; 7 - патрубок подвода греющей воды; 8 - патрубок отвода деаэрированной воды; 9 - патрубок отвода неконденсирующихся газов; 10 - решетка турбулизирующая; 11 - лопатка направляющая; 12 - сопло

Кроме того, кавитационная прочность воды может изменяться в процессе эксплуатации деаэратора. В этой связи изменяется и дегазационная характеристика деаэратора. Изменение дегазационной характеристики в процессе эксплуатации может приводить к ухудшению качества деаэрации или к необоснованно завышенному нагреву воды в деаэраторе, что экономически невыгодно.
В последнее время в совершенствовании процессов деаэрации наметилась тенденция повышения интенсивности процесса деаэрации за счет уменьшения кавитационной прочности деаэрируемой воды. Например, обработка деаэрируемой воды ультразвуком улучшает качество деаэрации. Замечено также, что при повышении хлоридов в деаэрируемой воде улучшается качество деаэрации, что, вероятно, связано также с уменьшением кавитационной прочности деаэрируемой воды.
Снижение кавитационной прочности деаэрируемой воды происходит и в деаэраторе (получившем распространение в теплоэнергетике), разработанном на основе изобретения . Отличительной особенностью данного деаэратора является то, что в патрубке подвода в деаэратор недеаэрированной воды установлено сопло. В сопле вода разгоняется до больших скоростей и турбулизуется, в результате кавитационная прочность деаэрируемой воды уменьшается, а интенсивность выделения газов из деаэрируемой воды за счет образования пузырьков повышается.
Однако данный деаэратор имеет существенный недостаток, выражающийся в том, что перед ним требуется создавать повышенное давление недеаэрированной воды. Указанный недостаток устранен в деаэраторе, показанном на рис. 2, в котором для повышения турбулентности потока деаэрируемой воды в патрубке 6 установлены решетка турбулентности 10, винтовые направляющие лопатки 11 и сопло 12. Данный деаэратор создан на основе изобретения . В разработанном деаэраторе поток деаэрируемой воды, проходя через патрубок 6, турбулизуется решеткой 10, закручивается по спирали лопатками 11 и затем поступает в сопло 12. При поступлении в сопло давление в потоке воды понижается, при этом из деаэрируемой воды интенсивно выделяются газы за счет образования пузырьков. При выходе из сопла 12 под действием центробежных сил закрученный поток распадается на мелкие капли, которые затем, двигаясь в паровом отсеке, подогреваются паром; при этом из капель, за счет диффузии, интенсивно выделяются газы.
Патрубок 6 с установленными в нем решеткой 10, лопатками 11 и соплом 12 выполняет роль форсунки, от эффективности работы которой зависит качество деаэрации воды.
Необходимым условием для распада потока воды на мелкие капли при выходе из форсунки является возрастание тангенциальной составляющей скорости течения жидкости в поперечном сечении потока от центральной оси к периферии. Данное условие может быть достигнуто за счет выбора оптимального угла закрутки направляющей лопатки.
Для определения угла закрутки направляющей лопатки определим математическую модель потока, закрученного винтовыми лопатками. Для этого зададимся законом закрутки лопатки
(1)
где а - угол закрутки лопатки на расстоянии r от оси патрубка, равный углу между образующей цилиндра, соосного с патрубком, и касательной к лопатке, исходящей из выходной кромки лопатки; r - расстояние (радиус) от угла а до оси патрубка; dH - диаметр патрубка; ан - угол закрутки лопатки на расстоянии dH/2 от оси патрубка.
Составим дифференциальное уравнение элементарной струйки потока. Запишем закон сохранения энергии для элементарной струйки в форме уравнения Бернулли, считая, что жидкость идеальная

(2)
где P - статическое давление элементарной струйки, образовавшееся от закрутки потока; р - плотность жидкости; и - тангенциальная составляющая скорости движения элементарной струйки; z - осевая составляющая скорости движения элементарной струйки; Рт - динамический напор элементарной струйки до закрутки потока.
Считаем, что угол закрутки потока равен углу закрутки лопатки.
Центробежная сила, действующая на элементарную струйку закрученного потока, равна разности давлений, действующих на боковые поверхности этой струйки, что выражается формулой
(3)
Из уравнений (1), (2), (3) получаем
(4)
где

Решение уравнения (4) имеет вид

(5)
После упрощения уравнение (5) может быть представлено в виде
(6)
где С1 - постоянная интегрирования.
Уравнение (6) представляет математическую модель потока жидкости в патрубке, закрученного винтовыми лопатками, закон закрутки которых описан уравнением (1).
Уравнение (6) позволяет определить поле скоростей потока и плотность орошения в факеле при различных значениях а, и dH, а также определить оптимальные ан и dH при заданном расходе воды.
На рис. 3 показана характеристика форсунки, направляющие лопатки которой рассчитаны с помощью формулы (6). Данная характеристика определена экспериментально при испытании одной из пяти форсунок, установленных в деаэраторе ДВ-800. Форсунки рассчитаны на расход воды 120 т/ч каждая при перепаде давления на форсунке 0,10 МПа.
При испытании форсунки деаэратор работал в следующем режиме:
расход недеаэрированной воды в деаэратор 575 т/ч;
температура недеаэрированной воды 26°С;
давление в деаэраторе 0,006 МПа;
давление воды перед форсункой 0,079 МПа.
Из результатов испытаний видно, что в указанном режиме пропускная способность форсунки близка расчетному значению, а плотность орошения одинакова по всему поперечному сечению факела.


Рис. 3. Плотность орошения в поперечном сечении факела:
r - расстояние от оси факела

Следует отметить, что расчетная производительность форсунки 120 т/ч определялась из условия максимально возможного расхода недеаэрированной воды в деаэратор 600 т/ч. Увеличивать производительность деаэратора более 600 т/ч не было необходимости, поскольку суммарная производительность деаэраторов, установленных на объекте, значительно превышает максимально возможный расход воды в деаэраторы.
В настоящее время в промышленной эксплуатации находится более 10 реконструированных деаэраторов, конструктивное исполнение которых аналогично деаэратору, показанному на рис. 2. Первый реконструированный деаэратор находится в эксплуатации с 1994 г. Испытания первого реконструированного деаэратора показали, что за счет реконструкции в нем уменьшился минимально необходимый нагрев воды с 24 до 16°С и понизилась минимально необходимая температура греющей воды. До реконструкции в качестве греющей среды в деаэраторе использовалась прямая сетевая вода с температурой 90°С и более и для достижения данной температуры использовался специальный подогреватель, который включался в работу при температуре прямой сетевой воды ниже 90°С. После реконструкции деаэратор обеспечивает нормальное качество деаэрации при температуре греющей воды 80°С и более. Снижать температуру греющей воды менее 80°С при испытании не было необходимости, так как для данного объекта указанная температура соответствует минимальному значению температуры прямой сетевой воды, определенной по температурному графику тепловых сетей. В этой связи данный деаэратор не испытан при температуре греющей воды ниже 80°С. Однако опыт эксплуатации реконструированных деаэраторов на других объектах показал, что снижение температуры греющей воды в них до 70°С не оказывает заметного влияния на качество деаэрации. Что касается максимальной производительности реконструированного деаэратора, то при температуре недеаэрированной воды
30°С и температуре греющей воды 70°С и более реконструированный деаэратор обеспечивает качественную деаэрацию 950 т/ч воды. Нереконструированные деаэраторы согласно при температуре недеаэрированной воды 30°С могут продеаэрировать не более 620 т/ч.
Имеется также положительный опыт эксплуатации реконструированных деаэраторов в течение длительного времени (с 1996 г.) при использовании в них в качестве греющей среды обратной сетевой воды с температурой 50 - 70°С. Опыт эксплуатации показал, что при температуре греющей воды 50 - 70°С деаэраторы стабильно обеспечивают требуемое качество деаэрации, однако производительность деаэратора при этом уменьшается и при температуре греющей воды 50°С производительность деаэратора составляет 40 - 50% номинальной производительности деаэратора.
Экономический эффект от реконструкции деаэратора ДВ-800, установленного на ТЭЦ в схеме подпитки теплосети, составляет 800 т/год условного топлива.

Выводы

  • Кавитационная прочность воды является одним из факторов, определяющих интенсивность процесса деаэрации воды в термических деаэраторах.
  • Различие дегазационных характеристик вакуумных деаэраторов, установленных на разных объектах, вызвано различием кавитационной прочности деаэрируемой воды на этих объектах.
  • Изменение дегазационной характеристики деаэратора без изменения температурных и гидродинамических параметров режима работы деаэратора происходит в связи с изменением кавитационной прочности воды.
  • Применение в вакуумных деаэраторах форсунок с направляющими винтовыми лопатками улучшает дегазационную характеристику деаэратора, а именно:
    уменьшает минимально необходимый нагрев воды в деаэраторе с 24 до 16°С;
    снижает минимально допустимую температуру греющей воды с 85 - 90 до 70°С.
  • Производительность реконструированного деаэратора, в конструкции которого применены форсунки с направляющими винтовыми лопатками, составляет 950 т/ч при температуре недеаэрированной воды 30°С и температуре греющей воды 70°С и более.
  • Список литературы

  • Типовая инструкция по эксплуатации автоматизированных деаэрационных установок подпитки теплосети. М.: Союзтехэнерго, 1985.
  • РТМ 108.030.21-78. Расчет и проектирование термических деаэраторов. Л.: ЦКТИ, 1979.
  • Бравиков А. М. Разработка и исследование деаэратора перегретой воды. - Теплоэнергетика, 1990, № 12.
  • Карелин В. Я. Кавитационные явления в центробежных и осевых насосах. М.: Машиностроение, 1975.
  • Водолазов О. А. Новый способ деаэрации воды. - Энергетик, 1999, № 2.
  • А.с. 1255805 (СССР). Вакуумный деаэратор / Комарчев И. Г., Нестеренко Б. М., Качанова-Махова Н. И. Опубл. в Б. И., 1986, № 33.
  • Пат. 2054384 (РФ). Термический деаэратор / Бравиков А. М. Опубл. в Б. И., 1996, № 5.
  • Шарапов В. И., Кувшинов О. Н. О рабочей производительности вакуумных деаэраторов. - Электрические станции, 1998, № 8.


  • Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования