Применение тригонометрии в искусстве и архитектуре. Измерительные работы

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

  1. Повторить основные формулы тригонометрии и закрепить их знания в ходе выполнения упражнений;
  2. Развивать навыки самоконтроля, умений работать с компьютерной презентацией.
  3. Воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов.

Оборудование: Компьютеры, компьютерная презентация.

Ожидаемый результат:

  1. Каждый ученик должен знать формулы тригонометрии и уметь применять их для преобразования тригонометрических выражений на уровне обязательных результатов.
  2. Знать вывод этих формул и уметь применять их для преобразования тригонометрических выражений.
  3. Знать формулы тригонометрии, уметь выводить эти формулы и применять их для более сложных тригонометрических выражений.

Основные этапы урока:

  1. Сообщение темы, цели, задач урока и мотивация учебной деятельности.
  2. Устный счёт
  3. Сообщение из истории математики
  4. Повторение (с 9 класса) формул тригонометрии с помощью компьютерной презентации
  5. Применение тригонометрических формул к преобразованию выражений
  6. Выполнение теста
  7. Подведение итогов урока
  8. Постановка задания на дом

Ход урока

I. Организационный момент.

Сообщение темы, цели, задач урока и мотивация учебной деятельности

II. Устная работа (задания заранее распечатаны у каждого учащегося):

Радианная мера двух углов треугольника равна и . Найдите градусную меру каждого из углов треугольника. Ответ : 60, 30, 90

Найдите радианную меру углов треугольника, если их величины относятся как 2:3:4. Ответ: , ,

Может ли косинус быть равным: а) , б) , в), г) , д) -2 ? Ответ: а) да; б) нет; в) нет; г) да; д) да.

Может ли синус быть равным: а) –3, 7 б) , в)? Ответ: а) нет; б) да; в) нет.

При каких значения a и b справедливы следующие равенства: а) cos x = ; б)sin x=; в) cos x= ; г) tg x= ; д) sin x = a? Ответ: а) /a/ 7; б) /a/ ; в) 0 г) b – любое число; д) -

III. Сообщение из истории тригонометрии (краткая историческая справка):

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как её вычислительный аппарат, отвечающий практическим нуждам человека.

Некоторые тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции.

Греческий астроном Гиппарх во II в. до н. э. составил таблицу числовых значений хорд в зависимости от величин стягиваемых ими дуг. Более полные сведения из тригонометрии содержатся в известном “Альмагесте” Птолемея. Сделанные расчёты позволили Птолемею составить таблицу, которая содержала хорды от 0 до 180 .

Название линий синуса и косинуса впервые были введены индийскими учёными. Они же составили первые таблицы синусов, хотя и менее точные, чем птолемеевы.

В Индии начинается по существу учение о тригонометрических величинах, названное позже гониометрией (от “гониа” - угол и “метрио” - измеряю).

На пороге XVII в. в развитии тригонометрии начинается новое направление – аналитическое.

Тригонометрия даёт необходимый метод развития многих понятий и методы решения реальных задач, возникающих в физике, механике, астрономии, геодозии, картографии и других науках. Кроме этого, тригонометрия является большим помощником в решении стереометрических задач.

IV. Работа на компьютерах с презентацией:

“Основные формулы тригонометрии” (Приложение1)

Предварительно напомнить технику безопасности в кабинете информатики.

  • Основные тригонометрические тождества.
  • Формулы сложения.
  • Формулы приведения
  • Формулы суммы и разности синусов (косинусов).
  • Формулы двойного аргумента.
  • Формулы половинного аргумента.

V. Применение тригонометрических формул к преобразованию выражений.

а) Один учащийся выполняет задание на обороте доски, остальные с места проверяют и поднимают сигнальные карточки (верно – “+”, неверно – “- “) с места.

Выбрать ответ.

Упростить выражение 7 cos - 5.

а) 1+cos; б) 2; в) –12; г) 12

Упростить выражение 5 – 4 si n

а) 1; б) 9; в) 1+8sin; г) 1+cos.

ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Геодезия

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Древняя астрономия

Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания - 360 локтей.

Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры . Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin угла 3 . По оценке Аристарха, эта величина лежит в промежутке от 1/20 до 1/18, то есть расстояние до Солнца в 20 раз больше, чем до Луны ; на самом деле Солнце почти в 400 раз дальше, чем Луна, ошибка возникла из-за неточности в измерении угла.

Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.

В общем, можно сказать, что тригонометрия использовалась для:

· точного определения времени суток;

· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны;

· нахождения географических координат текущего места;

· вычисления расстояния между городами с известными географическими координатами.

Гномон- древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),

позволяющий по наименьшей

длине его тени (в полдень) определить угловую высоту солнца.

Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)

Архитектура

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений

Рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось

множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения

Ситуация меняется, так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Медицина и биология .

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца . В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

вновь позабыли.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму

кривой, которая напоминает график функции y=tgx.

Измерительные работы

    Тригонометрия в астрономии:

    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)


    Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
    Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

    Тригонометрия в физике:

    виды колебательных явлений.

    Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, r — начальная фаза колебаний.

    Механические колебания . Механическими колебаниями

    Тригонометрия в природе.

    Мы часто задаем вопрос

  • Одно из фундаментальных свойств
  • - это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм - суточный.

Тригонометрия в биологии

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • диатоническая гамма 2:3:5

Тригонометрия в архитектуре

  • Страховая корпорация Swiss Re в Лондоне
  1. Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали
  • Думаем

Просмотр содержимого документа
«Данилова Т.В.-сценарий»

МКОУ «Ненецкая общеобразовательная средняя школа – интернат им. А.П.Пырерки»

Учебный проект

" "

Данилова Татьяна Владимировна

Учитель математики

    Обоснование актуальности проекта.

Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.
Слово тригонометрия впервые появляется в 1505 году в заглавии книги немецкого математика Питискуса.
Тригонометрия – слово греческое, и в буквальном переводе означает измерение треугольников (trigonan – треугольник, metreo - измеряю).
Возникновение тригонометрии было тесно связано с землемерием, астрономией и строительным делом.…

Школьник в 14-15 лет не всегда знает, куда пойдет учиться и где будет работать.
Для некоторых профессий ее знание необходимо, т.к. позволяет измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Принципы тригонометрии, используются и в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

    Определение предмета исследования

3. Цели проекта.

    Проблемный вопрос
    1. Какие понятия тригонометрии чаще всего используются в реальной жизни?
    2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине?
    3. Как связаны архитектура, музыка и тригонометрия?

    Гипотеза

    Проверка гипотезы

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) –

История тригонометрии:

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого «синуса дополнения», т.е. синуса угла, дополняющего данный угол до 90°. «Синус дополнения» или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co -sinus .

В XVII – XIX вв. тригонометрия становится одной из глав математического анализа.

Она находит большое применение в механике, физике и технике, особенно при изучении колебательных движений и других периодических процессов.

Жан Фурье доказал, что всякое периодическое движение может быть представлено (с любой степенью точности) в виде суммы простых гармонических колебаний.

в систему математического анализа.

Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

Тригонометрия в астрономии:

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Достижения Виета в тригонометрии
Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

Тригонометрия в физике:

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

Тригонометрия в природе.

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

    Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

    К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

    Биологические ритмы, биоритмы

    Основной земной ритм – суточный.

    Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

    Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

    Биологические ритмы, биоритмы связаны с тригонометрией

    Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

Возникновение музыкальной гармонии

    Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

    Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

    диатоническая гамма 2:3:5

Тригонометрия в архитектуре

    Детская школа Гауди в Барселоне

    Страховая корпорация Swiss Re в Лондоне

    Феликс Кандела Ресторан в Лос-Манантиалесе

    Интерпретация

Мы привели лишь малую часть того, где можно встретить тригонометрические функции.. Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

Мы доказали, что тригонометрия тесно связана с физикой, встречается в природе, медицине. Можно приводить бесконечно много примеров периодических процессов живой и неживой природы. Все периодические процессы можно описать с помощью тригонометрических функций и изобразить на графиках

Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы,

в которых она играет важную роль, будут расширяться.

    Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.

    Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

7. Литература.

    Программа Maple6, реализующий изображение графиков

    «Википедия»

    Учеба.ru

    Math.ru «библиотека»

Просмотр содержимого презентации
«Данилова Т.В.»

" Тригонометрия в окружающем нас мире и жизни человека "



Цели исследования:

Связь тригонометрии с реальной жизнью.


Проблемный вопрос 1. Какие понятия тригонометрии чаще всего используются в реальной жизни? 2. Какую роль играет тригонометрия в астрономии, физике, биологии и медицине? 3. Как связаны архитектура, музыка и тригонометрия?


Гипотеза

Большинство физических явлений природы, физиологический процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.


Что такое тригонометрия???

Тригонометрия (от греч. trigonon – треугольник, metro – метрия) – микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.



История тригонометрии

Истоки тригонометрии берут начало в древнем Египте, Вавилонии и долине Инда более 3000 лет назад.

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом и Птолемеем.

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна.

По звездам вычисляли местонахождение корабля в море.


Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в.

В отличие от греков инд ийцы стали рассматривать и употреблять в вычислениях уже не целую хорду ММ соответствующего центрального угла, а только ее половину МР, т. е. синуса - половины центрального угла.

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения » , т.е. синуса угла, дополняющего данный угол до 90 . « Синус дополнения » или (по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus.

Наряду с синусом индийцы ввели в тригонометрию косинус , точнее говоря, стали употреблять в своих вычислениях линию косинуса. Им были известны также соотношения cos =sin(90 - ) и sin 2 +cos 2 =r 2 , а также формулы для синуса суммы и разности двух углов.


В XVII – XIX вв. тригонометрия становится

одной из глав математического анализа.

Она находит большое применение в механике,

физике и технике, особенно при изучении

колебательных движений и других

периодических процессов.

О свойствах периодичности тригонометрических функций знал еще Виет, первые математические исследования которого относились к тригонометрии.

Доказал, что всякое периодическое

движение может быть

представлено (с любой степенью

точности) в виде суммы простых

гармонических колебаний.


Основоположник аналитической

теории

тригонометрических функций .

Леонард Эйлер

Во «Введении в анализ бесконечных» (1748 г)

трактует синус, косинус и т.д. не как

тригонометрические линии, обязательно

связанные с окружностью, а как

тригонометрические функции, которые он

рассматривал как отношения сторон

прямоугольного треугольника, как числовые

величины.

Исключил из своих формул

R – целый синус, принимая

R = 1, и упростил таким

образом записи и вычисления.

Разрабатывает учение

о тригонометрических функциях

любого аргумента.


В XIX веке продолжил

развитие теории

тригонометрических

функций.

Н.И.Лобачевский

« Геометрические рассмотрения,- пишет Лобачевский,- необходимы до тех пор в начале тригонометрии, покуда они не послужат к открытию отличительного свойства тригонометрических функций… Отсюда делается тригонометрия совершенно независимой от геометрии и имеет все достоинства анализа».


Стадии развития тригонометрии:

  • Тригонометрия была вызвана к жизни необходимостью производить измерения углов.
  • Первыми шагами тригонометрии было установление связей между величиной угла и отношением специально построенных отрезков прямых. Результат - возможность решать плоские треугольники.
  • Необходимость табулировать значения вводимых тригонометрических функций.
  • В XVIII в. тригонометрические функции были включены

в систему математического анализа.


Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.


Тригонометрия в астрономии

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Значительных высот достигла тригонометрия и у индийских средневековых астрономов.

Главным достижением индийских астрономов стала замена хорд

синусами, что позволило вводить различные функции, связанные

со сторонами и углами прямоугольного треугольника.

Таким образом, в Индии было положено начало тригонометрии

как учению о тригонометрических величинах.


Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)

Гиппарх



Тригонометрия в физике

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений, например:

Механические колебания

Гармонические колебания


Гармонические колебания

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

или

Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.


Механические колебания

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени.

Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.


Математический маятник

На рисунке изображены колебания маятника, он движется по кривой, называемой косинусом.


Траектория пули и проекции векторов на оси X и Y

Из рисунка видно, что проекции векторов на оси Х и У соответственно равны

υ x = υ o cos α

υ y = υ o sin α


Тригонометрия в природе

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?» . Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».


Оптические иллюзии

естественные

искусственные

смешанные


Теория радуги

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

sin α / sin β = n 1 / n 2

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Северное сияние

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.


  • Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.
  • К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.
  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

  • Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.
  • Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.
  • Основной земной ритм – суточный.
  • Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • Биологические ритмы, биоритмы связаны с тригонометрией.

  • Модель биоритмов можно построить с помощью графиков тригонометрических функций.
  • Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

Тригонометрия в биологии

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.



Возникновение музыкальной гармонии

  • Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.
  • Частоты, соответствующие

одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

  • диатоническая гамма 2:3:5

У музыки есть своя геометрия

Тетраэдр из различных типов аккордов четырех звуков:

синий – малые интервалы;

более теплые тона - более «разряженные» звуки аккорда; красная сфера- наиболее гармоничный аккорд с равными интервалами между нотами.


cos 2 С + sin 2 С = 1

АС – расстояние от верха статуи до глаз человека,

АН – высота статуи,

sin С - синус угла падения взгляда.


Тригонометрия в архитектуре

Детская школа Гауди в Барселоне


Страховая корпорация Swiss Re в Лондоне

y = f (λ)cos θ

z = f (λ)sin θ


Феликс Кандела Ресторан в Лос-Манантиалесе


  • Выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.
  • Доказали , что тригонометрия тесно связана с физикой, встречается в природе, музыке, астрономии и медицине.
  • Думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

Тригонометрия прошла длинный путь развития. И теперь, мы можем с уверенностью сказать, что тригонометрия не зависит от других наук, а другие науки зависят от тригонометрии.


  • Маслова Т.Н. «Справочник школьника по математике»
  • Программа Maple6, реализующий изображение графиков
  • «Википедия»
  • Учеба.ru
  • Math.ru «библиотека»
  • История математики с Древнейших времен до начала XIX столетия в 3-х томах// под ред. А. П. Юшкевича. Москва, 1970г. – том 1-3 Э. Т. Бэлл Творцы математики.
  • Предшественники современной математики// под ред. С. Н. Ниро. Москва,1983г. А. Н. Тихонов, Д. П. Костомаров.
  • Рассказы о прикладной математике//Москва, 1979г. А. В. Волошинов. Математика и искусство// Москва, 1992г. Газета Математика. Приложение к газете от 1.09.98г.

ТРИГОНОМЕТРИЯ –(от греч. trigwnon – треугольник и metrew – измеряю) – математическая дисциплина, изучающая зависимости между углами и сторонами треугольников и тригонометрические функции.

Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

В тригонометрии выделяют три вида соотношений: 1) между самими тригонометрическими функциями; 2) между элементами плоского треугольника (тригонометрия на плоскости); 3) между элементами сферического треугольника, т.е. фигуры, высекаемой на сфере тремя плоскостями, проходящими через ее центр. Тригонометрия началась именно с наиболее сложной, сферической части. Она возникла прежде всего из практических нужд. Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Наблюдения за звездным небом с незапамятных времен вели и астрологи.

Естественно, все измерения, связанные с расположением светил на небосводе, – измерения косвенные. Прямые могли быть проведены только на поверхности Земли, но и здесь далеко не всегда удавалось непосредственно определить расстояние между какими-то пунктами и тогда вновь прибегали к косвенным измерениям. Например, вычисляли высоту дерева, сравнивая длину его тени с длиной тени от какого-нибудь шеста, высота которого была известна. Аналогичным образом вычисляли и размеры острова в море. Подобные задачи сводятся к анализу треугольника, в котором одни его элементы выражают через другие. Этим и занимается тригонометрия. А поскольку звезды и планеты представлялись древним точками на небесной сфере, то сначала стала развиваться именно сферическая тригонометрия. Ее считали разделом астрономии.

А начиналось все очень давно. Первые отрывочные сведения по тригонометрии сохранились на клинописных табличках Древнего Вавилона. Астрономы Междуречья научились предсказывать положение Земли и Солнца и именно от них к нам пришла система измерения углов в градусах, минутах и секундах, потому что у вавилонян была принята шестидесятеричная система счисления .

Однако первые по-настоящему важные достижения принадлежат древнегреческим ученым. Например, 12-я и 13-я теоремы второй книги Начал Евклида (конец 4–3 в. до н. э.) выражают по существу теорему косинусов. Во 2 в. до н.э. астроном Гиппарх из Никеи (180–125 до н.э.) составил таблицу для определения соотношений между элементами треугольников. Такие таблицы нужны потому, что значения тригонометрических функций нельзя вычислить по аргументам с помощью арифметических операций. Тригонометрические функции приходилось рассчитывать заранее и хранить в виде таблиц. Гиппарх подсчитал в круге заданного радиуса длины хорд, отвечающих всем углам от 0 до 180°, кратным 7,5°. По существу, это таблица синусов. Труды Гиппарха до нас не дошли, но многие сведения из них включены в Альмагест (II в.) – знаменитое сочинение в 13 книгах греческого астронома и математика Клавдия Птолемея (ум. ок.160 н. э.). Древние греки не знали синусов, косинусов и тангенсов, вместо таблиц этих величин они употребляли таблицы, позволявшие находить хорду окружности по стягиваемой дуге. В Альмагесте автор приводит таблицу длин хорд окружности радиуса в 60 единиц, вычисленных с шагом 0,5° с точностью до 1/3600 единицы, и объясняет, как эта таблица составлялась. Труд Птолемея несколько веков служил введением в тригонометрию для астрономов.

Чтобы понять, как ученые древности составляли тригонометрические таблицы, надо познакомиться с методом Птолемея. Метод основан на теореме – произведение диагоналей вписанного в окружность четырехугольника равно сумме произведений его противоположных сторон.

Пусть ABCD – вписанный четырехугольник, АD – диаметр окружности, а точка O – ее центр (рис. 1). Если известно, как вычислять хорды, стягивающие углы DOC = a и DОВ = b, т. е. сторону СD и диагональ B, то, по теореме Пифагора , из прямоугольных треугольников АDВ и АDС можно найти АВ и АС, а потом, по теореме Птолемея, – BC = (АС ·ВD – АВ ·СD ) /АD , т.е. хорду, стягивающую угол ВОС = b – a. Некоторые хорды, например стороны квадрата, правильных шестиугольника и восьмиугольника, отвечающие углам 90, 60 и 45°, легко определить. Известна также сторона правильного пятиугольника, которая стягивает дугу в 72°. Приведенное выше правило позволяет вычислять хорды для разностей этих углов, например для 12° = 72° – 60°. Кроме того, можно находить хорды половинных углов, однако этого недостаточно, чтобы рассчитать, чему равна хорда дуги в 1°, – хотя бы потому, что все названные углы кратны 3°. Для хорды 1° Птолемей нашел оценку, показав, что она больше 2/3 хорды (3/2)° и меньше 4/3 хорды (3/4)° – двух чисел, совпадающих с достаточной для его таблиц точностью.

Если греки по углам вычисляли хорды, то индийские астрономы в сочинениях 4–5 вв. перешли к полухордам двойной дуги, т.е. в точности к линиям синуса (рис. 2). Они пользовались и линиями косинуса – вернее, не его самого, а «обращенного» синуса, получившего позднее в Европе название «синус-верзус», сейчас эта функция, равная 1 – cos a, уже не употребляется. Впоследствии тот же подход привел к определению тригонометрических функций через отношения сторон прямоугольного треугольника.

За единицу измерения отрезков MP , OP , PA принималась дуговая минута. Так, линия синуса дуги AB = 90° есть OB – радиус окружности; дуга AL , равная радиусу, содержит (округленно) 57°18" = 3438".

Дошедшие до нас индийские таблицы синусов (древнейшая составлена в 4–5 веке н.э.) не столь точны, как птолемеевы; они составлены через 3°45" (т.е. через 1/24 часть дуги квадранта).

Термины «синус» и «косинус» пришли от индийцев, не обошлось и без любопытного недоразумения. Полухорду индийцы называли «ардхаджива» (в переводе с санскрита – «половина тетивы лука»), а потом сократили это слово до «джива». Мусульманские астрономы и математики, получившие знания по тригонометрии от индийцев, восприняли его как «джиба», а затем оно превратилось в «джайб», что на арабском языке означает «выпуклость», «пазуха». Наконец, в 7 в. «джайб» буквально перевели на латынь словом «sinus», которое не имело никакого отношения к обозначаемому им понятию. Санскритское «котиджива» – синус остатка (до 90°), а на латинском – sinus complementi, т.е. синус дополнения, в 17 в. сократилось до слова «косинус». Наименования «тангенс» и «секанс» (в переводе с латинского означающие «касательная» и «секущая») введены в 1583 немецким ученым Финком.

Большой вклад в развитие тригонометрии внесли арабские ученые, например, Аль-Баттани (ок. 900 н.э.). В 10 в. багдадский ученый Мухаммед из Буджана, известный под именем Абу-ль-Вефа (940–997), присоединил к линиям синусов и косинусов линии тангенсов, котангенсов, секансов и косекансов. Он дает им те же определения, которые содержатся и в наших учебниках. Абу-ль-Вефа устанавливает и основные соотношения между этими линиями.

Итак, к концу 10 в. ученые исламского мира уже оперировали, наряду с синусом и косинусом, четырьмя другими функциями – тангенсом, котангенсом, секансом и косекансом; открыли и доказали несколько важных теорем плоской и сферической тригонометрии; использовали окружность единичного радиуса (что позволило толковать тригонометрические функции в современном смысле); придумали полярный треугольник сферического треугольника. Арабские математики составили точные таблицы, например таблицы синусов и тангенсов с шагом в 1" и точностью до 1/700 000 000. Очень важной прикладной задачей была и такая: научиться определять направление на Мекку для пяти ежедневных молитв, где бы ни находился мусульманин.

Особенно большое влияние на развитие тригонометрии оказал Трактат о полном четырехстороннике астронома Насир-эд-Дин из Туса (1201–1274), известного так же под именем ат-Туси. Это было первое в мире сочинение, в котором тригонометрия трактовалась как самостоятельная область математики.

В 12 в. был переведен с арабского языка на латинский ряд астрономических работ, по ним впервые европейцы познакомились с тригонометрией.

Трактат Насир-эд-Дина произвел большое впечатление на немецкого астронома и математика Иоганна Мюллера (1436–1476). Современники больше знали его под именем Региомонтана (так переводится на латинский название его родного города Кенигсберга, ныне – Калининграда). Региомонтан составил обширные таблицы синусов (через 1 минуту с точностью до седьмой значащей цифры). Он впервые отступил от шестидесятиричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса. Таким образом, синусы выражались целыми числами, а не шестидесятиричными дробями. До введения десятичных дробей оставался только один шаг, но он потребовал более 100 лет. Труд Региомонтана О треугольниках всех родов пять книг сыграл в европейской математике ту же роль, что и сочинение Насир-эд-Дина в науке мусульманских стран.

За таблицами Региомонтана последовал ряд других, еще более подробных. Друг Коперника Ретик (1514–1576) вместе с несколькими помощниками в течение 30 лет работал над таблицами, законченными и изданными в1596 его учеником Отто. Углы шли через 10"", а радиус делился на 1 000 000 000 000 000 частей, так что синусы имели 15 верных цифр.

Дальнейшее развитие тригонометрии шло по пути накопления и систематизации формул, уточнения основных понятий, становления терминологии и обозначений. Многие европейские математики работали в области тригонометрии. Среди них такие великие ученые, как Николай Коперник (1473–1543), Тихо Браге (1546–1601) и Иоганн Кеплер (1571–1630). Франсуа Виет (1540–1603) дополнил и систематизировал различные случаи решения плоских и сферических треугольников, открыл «плоскую» теорему косинусов и формулы для тригонометрических функций от кратных углов. Исаак Ньютон (1643–1727) разложил эти функции в ряды и открыл путь для их использования в математическом анализе. Леонард Эйлер (1707–1783) ввел и само понятие функции, и принятую в наши дни символику. Величины sin x , cos x и т.д. он рассматривал как функции числа x – радианной меры соответствующего угла. Эйлер давал числу x всевозможные значения: положительные, отрицательные и даже комплексные. Он также обнаружил связь между тригонометрическими функциями и экспонентой комплексного аргумента, что позволило превратить многочисленные и зачастую весьма замысловатые тригонометрические формулы в простые следствия из правил сложения и умножения комплексных чисел. Он же ввел и обратные тригонометрические функции.

К концу 18 в. тригонометрия как наука уже сложилась. Тригонометрические функции нашли применение в математическом анализе, физике, химии, технике – везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника.

Решение любых треугольников, в конечном счете, сводится к решению прямоугольных треугольников (т.е. таких, у которых один из углов – прямой). Поскольку все прямоугольные треугольники с заданным острым углом подобны друг другу, отношения их соответственных сторон одинаковы. Например, в прямоугольном треугольнике ABC отношение двух его сторон, например, катета а к гипотенузе с , зависит от величины одного из острых углов, например А . Отношения различных пар сторон прямоугольного треугольника и называются тригонометрическими функциями его острого угла. Всего таких отношений в треугольнике шесть, и им отвечают шесть тригонометрических функций (обозначения сторон и углов треугольника на рис. 3).

Так как А + В = 90°, то

sin A = cos B = cos (90° – A ),

A = ctg B = ctg (90° – A ).

Из определений вытекает несколько равенств, связывающих тригонометрические функции одного и того же угла между собой:

С учетом теоремы Пифагора a 2 + b 2 = c 2 можно выразить все шесть функций через какую-нибудь одну. Например, синус и косинус связаны основным тригонометрическим тождеством

sin 2 A + cos 2 A = 1.

Некоторые соотношения между функциями:

Эти формулы справедливы и для тригонометрических функций любого угла, но ими надо пользоваться осторожно, поскольку правые и левые части могут иметь разные области определения.

Есть только два прямоугольных треугольника, у которых и углы «хорошие» (выражаются целым или рациональным числом градусов), и хотя бы одно из отношений сторон рационально. Это равнобедренный треугольник (с углами 45, 45 и 90°) и половина равностороннего треугольника (с углами 30, 60, 90°) – как раз те два случая, когда значения тригонометрических функций удается вычислить прямо по определению. Эти значения приведены в таблице

n 0 1 2 3 4
Угол 0 30° 45° 60° 90°
sin
cos
tg
ctg

Отношения, входящие в теорему синусов, имеют простой геометрический смысл. Если описать окружность около треугольника ABC (рис. 4) и провести диаметр BD , то по теореме о вписанном угле РBCD = РA либо, если угол тупой, 180° – А . В любом случае a = BC = BD sin A = 2 R sin A или

где R – радиус описанной окружности треугольника АВС . Это «усиленная» теорема синусов, объясняющая, почему таблицы хорд древних были, по существу, таблицами синусов.

Доказывается и теорема косинусов

с 2 = а 2 + b 2 – 2аb cos С .

позволяющая найти сторону треугольника по двум другим сторонам и углу между ними, а также углы по трем сторонам.

Есть и ряд других соотношений между элементами треугольника, например. теорема тангенсов:, где

cos (a + b) = cos a cos bsin a sin b,

cos (ab) = cos a cos b + sin a sin b.

Общее определение тригонометрических функций

Пусть точка движется с единичной скоростью по единичной окружности с центром в начале координат О против часовой стрелки (рис. 5). В момент t = 0 точка минует P 0 (1; 0). За время t точка проходит дугу длиной t и занимает положение Р t , а значит, угол, на который поворачивается луч, проведенный в эту точку из О , тоже равен t. Таким образом, мы сопоставляем каждому моменту времени, т.е. точке t действительной прямой, точку Р t единичной окружности.

Подобное отображение прямой на окружность иногда называют «намоткой». Если представить действительную ось в виде бесконечной нерастяжимой нити, приложить точку t = 0 к точке P 0 окружности и начать наматывать оба конца нити на окружность, то каждая точка t попадет как раз в точку Р t . При этом:

1) точки оси, отстоящие друг от друга на целое число длин окружностей, т, е. на 2pk (k =±1, ± 2, …), попадают в одну и ту же точку окружности;

2) точки t и –t попадают в точки, симметричные относительно Ox ;

3) при 0 Ј t Ј p угол P 0 OP t отложен в полуплоскость у і 0 и равен t (рис. 8).

Три этих условия составляют формальное определениетакогоотображения – намотки. В силу условия 3 при 0 = t Ј p координаты точки р равны (cos t , sin t ). Данное наблюдение и подсказывает определение: косинусом и синусом произвольного числа t называются соответственно абсцисса и ордината точки Р t .

Тангенс тоже можно определить через координаты. Проведем касательную к единичной окружности в точке (1; 0) (рис. 7). Она называется осью тангенсов. Точка Q t пересечения прямой OP t с осью тангенсов имеет координаты (1; sin t /cos t ), и ее ордината, по определению, равна tg t . По абсолютной величине это длина отрезка касательной, проведенной из Q t к окружности. Таким образом, само название «тангенс» вполне оправдывается. Кстати, как и секанса: на рис. 9 sec t – отрезок OQ t , являющийся, правда, не всей секущей, но ее частью. Наконец, котангенс можно определить как абсциссу точки пересечения OP t с осью котангенсов – касательной к единичной окружности в точке (0, 1): ctg t =cos t / sin t .

Теперь тригонометрические функции определены для всех чисел.

Марина Федосова



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования