G в физике гравитационная постоянная. Гравитационная постоянная земли

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Гравитационная постоянная или иначе – постоянная Ньютона – одна из основных констант, используемых в астрофизике. Фундаментальная физическая постоянная определяет силу гравитационного взаимодействия. Как известно, силу, с которой каждое из двух тел, взаимодействующих посредством , притягивается можно высчитать из современной формы записи закона всемирного тяготения Ньютона:

  • m 1 и m 2 — тела, взаимодействующие посредством гравитации
  • F 1 и F 2 – векторы силы гравитационного притяжения, направленные к противоположному телу
  • r – расстояние между телами
  • G – гравитационная постоянная

Данный коэффициент пропорциональности равен модулю силы тяготения первого тела, которая действует на точечное второе тело единичной массы, при единичном расстоянии между этими телами.

G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Очевидно, что данная формула широко применима в области астрофизики и позволяет рассчитать гравитационное возмущение двух массивных космических тел, для определения дальнейшего их поведения.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684-1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м 3 с −2 .

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см 3 (сегодня более точные расчеты дают 5,52 г/см 3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10 −11 м³/(кг·с²), G = 6,71·10 −11 м³/(кг·с²) или G = (6,6 ± 0,04)·10 −11 м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10 -17 . Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10 -11 – 10 -12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10 −11 м 3 ·с −2 ·кг −1 .

Эксперименты по измерению гравитационной постоянной G, проведенные в последние годы несколькими группами, демонстрируют поразительное несовпадение друг с другом. Опубликованное на днях новое измерение, выполненное в Международном бюро мер и весов, отличается от всех них и только усугубляет проблему. Гравитационная постоянная остается на редкость неподатливой для точного измерения величиной.

Измерения гравитационной постоянной

Гравитационная постоянная G, она же постоянная Ньютона, - одна из самых важных фундаментальных констант природы. Это та константа, которая входит в закон всемирного тяготения Ньютона; она не зависит ни от свойств притягивающихся тел, ни от окружающих условий, а характеризует интенсивность самой силы гравитации. Естественно, что такая фундаментальная характеристика нашего мира важна для физики, и она должна быть аккуратно измерена.

Однако ситуация с измерением G до сих пор остается очень необычной. В отличие от многих других фундаментальных констант, гравитационная постоянная с большим трудом поддается измерению. Дело в том, что аккуратный результат можно получить только в лабораторных экспериментах, через измерение силы притяжения двух тел известной массы. Например, в классическом опыте Генри Кавендиша (рис. 2) на тонкой нити подвешивается гантелька из двух тяжелых шаров, и когда сбоку к этим шарам пододвигают другое массивное тело, то сила гравитации стремится повернуть эту гантельку на некоторый угол, пока вращательный момент сил слегка закрученной нити не скомпенсирует гравитацию. Измеряя угол поворота гантельки и зная упругие свойства нити, можно вычислить силу гравитации, а значит, и гравитационную постоянную.

Это устройство (оно называется «крутильные весы») в разных модификациях используется и в современных экспериментах. Такое измерение очень просто по сути, но трудно по исполнению, поскольку оно требует точного знания не только всех масс и всех расстояний, но и упругих свойств нити, а также обязывает минимизировать все побочные воздействия, как механические, так и температурные. Недавно, правда, появились и первые измерения гравитационной постоянной другими, атомно-интерферометрическими методами , которые используют квантовую природу вещества. Однако точность этих измерений пока сильно уступает механическим установкам, хотя, возможно, за ними будущее (см. подробности в новости Гравитационная постоянная измерена новыми методами , «Элементы», 22.01.2007).

Так или иначе, но, несмотря на более чем двухсотлетнюю историю, точность измерений остается очень скромной. Нынешнее «официальное» значение, рекомендованное американским Национальным институтом стандартизации (NIST), составляет (6,67384 ± 0,00080)·10 –11 м 3 ·кг –1 ·с –2 . Относительная погрешность тут составляет 0,012%, или 1,2·10 –4 , или, в еще более привычных для физиков обозначениях, 120 ppm (миллионных долей), и это на несколько порядков хуже, чем точность измерения других столь же важных величин. Более того, вот уже несколько десятилетий измерение гравитационной постоянной не перестает быть источником головной боли для физиков-экспериментаторов. Несмотря на десятки проведенных экспериментов и усовершенствование самой измерительной техники, точность измерения так и осталась невысокой. Относительная погрешность на уровне 10 –4 была достигнута еще 30 лет назад, и никакого улучшения с тех пор нет.

Ситуация по состоянию на 2010 год

В последние несколько лет ситуация стала еще более драматичной. В 2008–2010 годах три группы обнародовали новые результаты измерения G. Над каждым из них команда экспериментаторов работала годами, причем не только непосредственно измеряла величину G, но и тщательно искала и перепроверяла всевозможные источники погрешностей. Каждое из этих трех измерений обладало высокой точностью: погрешности составляли 20–30 ppm. По идее, эти три измерения должны были существенно улучшить наше знание численной величины G. Беда лишь в том, что все они отличались друг от друга аж на 200–400 ppm, то есть на целый десяток заявленных погрешностей! Эта ситуация по состоянию на 2010 год показана на рис. 3 и кратко описана в заметке Неловкая ситуация с гравитационной постоянной .

Совершенно ясно, что сама гравитационная постоянная тут не виновата; она действительно обязана быть одной и той же всегда и везде. Например, есть спутниковые данные, которые хоть и не позволяют хорошо измерить численное значение константы G, зато позволяют убедиться в ее неизменности - если бы G изменилась за год хоть на одну триллионную долю (то есть на 10 –12), это уже было бы заметно. Поэтому единственный вытекающий отсюда вывод таков: в каком-то (или в каких-то) из этих трех экспериментов есть неучтенные источники погрешностей. Но вот в каком?

Единственный способ попытаться разобраться, это повторять измерения на других установках, и желательно разными методами. К сожалению, особенного разнообразия методик здесь пока достичь не удается, поскольку во всех экспериментах используется то или иное механическое устройство. Но всё же разные реализации могут обладать разными инструментальными погрешностями, и сравнение их результатов позволит разобраться в ситуации.

Новое измерение

На днях в журнале Physical Review Letters было опубликовано одно такое измерение. Небольшая группа исследователей, работающих в Международном бюро мер и весов в Париже, с нуля построила аппарат, который позволил измерить гравитационную постоянную двумя разными способами. Он представляет из себя те же крутильные весы, только не с двумя, а с четырьмя одинаковыми цилиндрами, установленными на диске, подвешенном на металлической нити (внутренняя часть установки на рис. 1). Эти четыре груза гравитационно взаимодействуют с четырьмя другими, более крупными цилиндрами, насаженными на карусель, которую можно повернуть на произвольный угол. Схема с четырьмя телами вместо двух позволяет минимизировать гравитационное взаимодействие с несимметрично расположенными предметами (например, стенками лабораторной комнаты) и сфокусироваться именно на гравитационных силах внутри установки. Сама нить имеет не круглое, а прямоугольное сечение; это, скорее, не нить, а тонкая и узкая металлическая полоска. Такой выбор позволяет ровнее передавать нагрузку по ней и минимизировать зависимость от упругих свойств вещества. Весь аппарат находится в вакууме и при определенном температурном режиме, который выдерживается с точностью до сотой доли градуса.

Это устройство позволяет выполнять три типа измерения гравитационной постоянной (см. подробности в самой статье и на страничке исследовательской группы). Во-первых, это буквальное воспроизведение опыта Кавендиша: поднесли груз, весы повернулись на некоторый угол, и этот угол измеряется оптической системой. Во-вторых, его можно запустить в режиме крутильного маятника, когда внутренняя установка периодически вращается туда-сюда, а наличие дополнительных массивных тел изменяет период колебаний (этот способ, впрочем, исследователи не использовали). Наконец, их установка позволяет выполнять измерение гравитационной силы без поворота грузиков. Это достигается с помощью электростатического сервоконтроля: к взаимодействующим телам подводятся электрические заряды так, чтобы электростатическое отталкивание полностью компенсировало гравитационное притяжение. Такой подход позволяет избавиться от инструментальных погрешностей, связанных именно с механикой поворота. Измерения показали, что два метода, классический и электростатический, дают согласующиеся результаты.

Результат нового измерения показан красной точкой на рис. 4. Видно, что это измерение не только не разрешило наболевший вопрос, но и еще сильнее усугубило проблему: оно сильно отличается от всех остальных недавних измерений. Итак, к настоящему моменту у нас имеется уже четыре (или пять, если считать неопубликованные данные калифорнийской группы) разных и при том довольно точных измерения, и все они кардинально расходятся друг с другом! Разница между двумя самыми крайними (и хронологически - самыми последними) значениями уже превышает 20(!) заявленных погрешностей .

Что касается нового эксперимента, тут надо добавить вот что. Эта группа исследователей уже выполняла аналогичный эксперимент в 2001 году. И тогда у них тоже получалось значение, близкое к нынешнему, но только чуть менее точное (см. рис. 4). Их можно было бы заподозрить в простом повторении измерений на одном и том же железе, если бы не одно «но» - тогда это была другая установка. От той старой установки они сейчас взяли только 11-килограммовые внешние цилиндры, но весь центральный прибор был сейчас построен заново. Если бы у них действительно был какой-то неучтенный эффект, связанный именно с материалами или изготовлением аппарата, то он вполне мог измениться и «утащить за собой» новый результат. Но результат остался примерно на том же месте, что и в 2001 году. Авторы работы видят в этом лишнее доказательство чистоты и достоверности их измерения.

Ситуация, когда сразу четыре или пять результатов, полученных разными группами, все различаются на десяток-другой заявленных погрешностей, по-видимому, для физики беспрецедентна. Какой бы высокой ни была точность каждого измерения и как бы авторы ею ни гордились, для установления истины она сейчас не имеет никакого значения. И пока что пытаться на их основании узнать истинное значение гравитационной постоянной можно только одним способом: поставить значение где-то посередине и приписать погрешность, которая будет охватывать весь этот интервал (то есть раза в полтора-два ухудшить нынешнюю рекомендованную погрешность). Можно лишь надеяться, что следующие измерения будут попадать в этот интервал и постепенно будут давать предпочтение какому-то одному значению.

Так или иначе, но гравитационная постоянная продолжает оставаться головоломкой измерительной физики. Через сколько лет (или десятилетий) эта ситуация действительно начнет улучшаться, сейчас предсказать трудно.

Все попытки экспериментаторов по уменьшению погрешности измерений гравитационной постоянной Земли до сего времени сводились к нулю. Как было отмечено ранее, со времен Кавендиша точность измерения этой постоянной практически не увеличилась. За два с лишним столетия точность измерения не сдвинулась с места. Такую ситуацию можно назвать по аналогии с «ультрафиолетовой катастрофой» как «катастрофа гравитационной постоянной». Из ультрафиолетовой катастрофы выбрались с помощью квантов, а как выйти из катастрофы с гравитационной постоянной?

Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:

Где, g – ускорение свободного падения (g=9,78 м/с 2 – на экваторе; g=9,832 м/с 2 – на полюсах).

R – радиус Земли, м,

M – масса Земли, кг.

Стандартное значение ускорения свободного падения, принятое при построении систем единиц, равно: g=9,80665 . Отсюда усредненное значение G будет равно:

В соответствии с полученным G , уточним температуру из пропорции:

6,68·10 -11 ~х=1~4,392365689353438·10 12

Данная температура соответствует по шкале Цельсия 20,4 o .

Такой компромисс, я думаю, вполне мог бы удовлетворить две стороны: экспериментальную физику и комитет (КОДАТА), чтобы периодически не пересматривать и не изменять значение гравитационной постоянной для Земли.

Можно «законодательно» утвердить нынешнее значение гравитационной постоянной для Земли G=6,67408·10 -11 Нм 2 /кг 2 , но скорректировать стандартное значение g=9,80665, несколько уменьшив его значение.

Кроме того, если использовать среднюю температуру Земли, равную 14 o С, то гравитационная постоянная будет равна G=6,53748·10 -11 .

Итак, у нас имеются три значения, претендующих на пьедестал гравитационной постоянной G для планеты Земля: 1) 6,67408·10 -11 м³/(кг·с²) ; 2) 6,68·10 -11 м³/(кг·с²) ; 3) 6,53748·10 -11 м³/(кг·с²) .

Комитету КОДАТА остается вынести окончательный вердикт, какую из них утвердить как гравитационную постоянную Земли.

Мне могут возразить, если гравитационная постоянная зависит от температуры взаимодействующих тел, то силы притяжения днем и ночью, зимой и летом должны отличаться. Да, именно так и должно быть, с малыми телами. Но Земля огромный, быстро вращающийся шар, имеет громадный запас энергии. Отсюда, интегральное количество крафонов зимой и летом, днем и ночью, вылетающих из Земли, одинаково. Поэтому, ускорение свободного падения на одной широте остается всегда постоянным.

Если переместиться на Луну, где разность температур дневного и ночного полушарий сильно разнятся, то гравиметры должны зафиксировать разницу силы притяжения.

Related Posts

11 комментариев

    Только один вопрос к Вам:

    Или у Вас в постранстве энергия не в сфере распространяется?

    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.

    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»

    Только один вопрос к Вам:
    Если Вы уже начали говорить об энергии, то почему напрочь забыли о 4Пи перед R^2?!
    Или у Вас в постранстве энергия не в сфере распространяется?
    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.
    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»
    ________________________________________________________
    Вместо одного заявленного вопроса оказалось три, но суть не в этом.
    1. Касаемо 4π. В формулах (9) и (10) R2 – это расстояние от тела (предмета) до центра Земли. Откуда здесь должна появиться 4π – не понятно.
    2. Что касается максимальной температура вещества в природе. Вы, очевидно, поленились открыть ссылку в конце статьи: «Гравитационная постоянная величина – переменная».
    3. Теперь относительно «осмысленного описания процесса гравитационного взаимодействия тел». Все осмыслено и описано. Относительно, в какую сторону летят эти самые крафоны, читаем статьи: « ». Солнечные фотоны стартуют с поверхности Светила без отдачи, с приобретением импульсов придачи. Фотон, в противовес материальному миру, не имеет инерции – его импульс возникает в момент отрыва от источника без отдачи!
    Явление отдачи наблюдается только в телах, когда под действием внутренних сил оно распадается на части, разлетающееся в противоположные стороны. Фотон не распадается на части, он не расстается со своим приобретенным импульсом до своего поглощения, поэтому для него выражение (3) будет справедливо.
    « » , и ч.2 .
    Цитата из 2-й части: «Крафоны из элементарного шарика вылетают спонтанно, по разным направлениям по нормали его поверхности. Притом, направлены они, в основном, в атмосферу, т.е. в более разреженный электромагнитный эфир (ЭМЭ) по сравнению с ЭМЭ вод Мирового океана. В принципе та же картина наблюдается и на материках».
    Уважаемые читатели, на тему: как возникает гравитация, и кто является ее переносчиком, читайте всю главу под названием: «Гравитация». Конечно, можно и выборочно, для этого кликайте по кнопке «Карта сайта» верхнего меню, расположенного над шапкой сайта.

    Добавление к предыдущему комментарию.

    12окт.2016г. На страницах электронного научно-практического журнала «Современные научные исследования и инновации» опубликована моя статья под названием: «Фотонно-квантовая гравитация». В статье изложена суть гравитации. Прочесть по ссылке:

    P.S. Алексей Вы правы, в данном журнале указанной статьи нет. Читай ниже мой комментарий.

    Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((

    «Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((»
    Статья: ГРАВИТАЦИЯ ЗЕМЛИ ФОТОННО-КВАНТОВАЯ ГРАВИТАЦИЯ переехала в другой журнал: «Scientific-Researches» №5(5), 2016, с. 79
    http://tsh-journal.com/wp-content/uploads/2016/11/VOL-1-No-5-5-2016.pdf

    05.01.2017. Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула

    «Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула»
    ———————————
    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    «Все тела, обладающие массой, возбуждают в окружающем пространстве гравитационные поля, подобно тому, как электрически заряженные частицы образуют вокруг себя электростатическое поле. Можно предположить, что тела несут в себе гравитационный заряд, аналогичный электрическому, или, по-другому, обладают гравитационной массой. С высокой точностью было установлено, что инертная и гравитационная массы совпадают.
    2
    Пусть имеется два точечных тела массами m1 и m2. Они удалены друг от друга на расстояние r. Тогда сила гравитационного притяжения между ними равна: F=C·m1·m2/r², где С – коэффициент, который зависит лишь от выбранных единиц измерения.

    3
    Если на поверхности Земли имеется небольшое тело, его размерами и массой можно пренебречь, т.к. габариты Земли намного превосходят их. При определении расстояния между планетой и поверхностным телом рассматривается только радиус Земли, т.к. высота расположения тела пренебрежимо мала в сравнении с ним. Получается, что Земля притягивает тело с силой F=M/R², где M – масса Земли, R – ее радиус.
    4
    Согласно закону всемирного тяготения, ускорение тел при действии силы тяжести на поверхности Земли равно: g=G M/ R². Здесь G – гравитационная постоянная, численно равная примерно 6,6742 10^(−11).
    5
    Ускорение свободного падения g и радиус земли R находятся из непосредственных измерений. Константа G с большой точностью определена в опытах Кэвендиша и Йолли. Итак, масса Земли M=5,976 10^27 г ≈ 6 10^27 г.

    фТавтология, на мой взгляд, разумеется ошибочный, заключается в том, что при вычислении массы Земли используется все тот же коэффициент G Кавендиша Йолли под названием гравитационная постоянная, которая совсем даже не постоянная, в чем я с Вами абсолютно согласен. Поэтому Ваш посыл «Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:» не совсем корректен. Ваш расчет константы G уже использован в расчете массы Земли. Ни в коей мере не хочу Вас укорить, просто очень хочу разобраться с этой гравитационной постоянной, которой в законе Роберта Гука присвоенного Ньютоном совсем даже не было. С глубоким уважением Микула.

    Уважаемый, Микула, Ваше желание понять и разобраться с гравитационной постоянной похвально. Учитывая, что понять данную константу желали многие ученые, но не многим удалось это сделать.
    «Константа G с большой точностью определена в опытах Кавендиша и Йолли».
    Нет! С не большой! Иначе, зачем бы наука тратила средства и время для ее регулярной перепроверки и уточнения, т.е. усреднения результатов, чем и занимается КОДАТА. А нужна она как раз для того чтобы «взвесить Землю» и узнать ее плотность, чем и прославился Кавендиш. Но как видите, G гуляет от одного опыта к другому. Тоже самое и с ускорением свободного падения.
    Гравитационная постоянная – это коэффициент для одного значения температуры, а температура, что дышло.
    Что предлагаю я? Для планеты Земля раз и навсегда установить одно значение G и сделать ее действительно постоянной c учетом g.
    Не поленитесь, прочтите все статьи в рубрике G (гравитационная постоянная), думаю, у Вас многое прояснится. Начните сначала:

    Путь Наш во мраке… И стукаемся Мы лбами не только об осклизлые стены подземелья в поисках проблесков к выходу, но и об лбы таких же несчастных, матерясь и проклиная… хромые, безрукие, слепые нищие … И не слышим друг друга. Протягиваем руку и получаем в неё плевок… и потому бесконечен Наш путь… И тем не менее… вот моя рука. Это моя версия понимания природы гравитации… и «сильного взаимодействия».
    Мезенцев Николай Фёдорович.

    Ваша рука, к сожалению, мне никак не помогла, а собственно зачем.

Этот сайт использует Akismet для борьбы со спамом. .


Ваш комментарий на модерации.

В теории тяготения Ньютона, так и в теории относительности Эйнштейна гравитационная постоянная (G ) является универсальной константой природы, неизменяющаяся в пространстве и времени, независящая от физических и химических свойств среды и гравитирующих масс.

В первоначальном виде в формуле Ньютона коэффициент G отсутствовал. Как указывает источник : «Гравитационная постоянная впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком С.Д. Пуассоном в «Трактате по механике» (1809), по крайней мере, никаких более ранних работ, в которых фигурировала бы гравитационная постоянная историками не выявлено».

Введение коэффициента G было вызвано двумя причинами: необходимостью установить правильную размерность и согласовать силы гравитации с реальными данными. Но присутствие данного коэффициента в законе всемирного тяготения по-прежнему не проливало свет на физику процесса взаимного притяжения, за что и критиковали Ньютона его современники.

Ньютона обвиняли по одной серьезной причине: если тела притягиваются между собой, то они должны тратить на это энергию, но из теории не видно, откуда энергия берется, как она расходуется и из каких источников пополняется. Как отмечают некоторые исследователи: открытие данного закона произошло после введенного Декартом принципа сохранения количества движения, но из теории Ньютона следовало, что притяжение есть свойство, внутренне присущее взаимодействующим массам тел, которые расходуют энергию без пополнения и меньше ее не становится! Это какой-то неисчерпаемый источник гравитационной энергии!

Лейбниц называл принцип тяготения Ньютона «невещественной и необъяснимой силой». Предположение о силе притяжения в совершенной пустоте было охарактеризовано Бернулли, как «возмутительное»; и принцип «actio in distans» (действия на расстоянии) не встретил тогда особой благосклонности нежели сейчас.

Наверное, не на пустом месте физики в штыки встретили формулу Ньютона, в ней действительно не отражена энергия для гравитационного взаимодействия. Почему на разных планетах разное притяжение, причем G для всех тел на Земле и в Космосе постоянная? Может G зависит от массы тел, но в чистом виде масса не обладает никакой гравитацией.

Учитывая тот факт, что в каждом конкретном случае взаимодействие (притяжение) тел происходит с разной силой (усилием), то эта сила должна зависеть от энергии гравитирующих масс. В связи с изложенным, в формуле Ньютона должен присутствовать энергетический коэффициент, отвечающий за энергию притягивающихся масс. Более правильным утверждением в гравитационном притяжении тел следовало бы говорить не о взаимодействии масс, а взаимодействии энергий, заключенных в этих массах. То есть энергия, имеет материальный носитель, без которого она не может существовать.

Поскольку, энергонасыщенность тел связана с их теплотой, (температурой), то коэффициент должен отражать это соответствие, т.к. теплота порождает гравитацию !

Еще один аргумент по поводу не постоянства G. Приведу цитату из ретро учебника по физике: «Вообще соотношение Е=mc 2 показывает, что масса любого тела пропорциональна его полной энергии. Поэтому всякое изменение энергии тела сопровождается одновременным изменением его массы. Так, например, если какое-либо тело нагревается, то его масса увеличивается» .

Если масса двух нагретых тел увеличивается, то в соответствии с законом всемирного тяготения , и сила их взаимного притяжения тоже должна увеличиваться. Но здесь возникает серьезная проблема. При повышении температуры, стремящейся к бесконечности, массы и сила между гравитирующими телами также будут стремиться к бесконечности. Если мы будем утверждать, что температура бесконечна, а сейчас иногда такие вольности допускаются, то гравитация между двумя телами тоже будет бесконечна, в результате тела при нагревании должны сжиматься, а не расширяться! Но природа, как видите, до абсурда не доходит!

Как обойти эту трудность? Тривиально – необходимо найти максимальную температуру вещества в природе. Вопрос: как ее найти?

Температура конечна

Полагаю, то огромное количество лабораторных измерений гравитационной постоянной, проводились и проводятся при комнатной температуре, равной: Θ=293 К (20 0 С) или близкой к этой температуре, т.к. сам инструмент – крутильные весы Кавендиша, требует очень тонкого с ним обращения (рис.2). При измерениях должны быть исключены всякие помехи, особенно вибрация и температурные изменения. Измерения должны проводиться в вакууме с высокой точностью, этого требует очень малая величина измеряемой величины.

Для того чтобы «Закон всемирного тяготения» был универсальным и всемирным, необходимо связать его с термодинамической шкалой температур. Сделать это нам помогут расчеты и графики, которые представлены ниже.

Возьмем декартову систему координат ОХ – ОУ. В этих координатах построим начальную функцию G=ƒ(Θ ).

На оси абсцисс отложим температуру, начиная от нуля градусов Кельвина. На оси ординат отложим значения коэффициента G, учитывая, что его значения должны укладываться в интервале от нуля до единицы.

Отметим первую реперную точку (А), эта точка с координатами: х=293,15 К (20⁰С); у=6,67408·10 -11 Нм 2 /кг 2 (G). Соединим эту точку с началом координат и получим график зависимости G=ƒ(Θ ), (рис. 3)

Рис. 3

Экстраполируем данный график, продлим прямую до пересечения со значением ординаты, равной единице, у=1. При построении графика возникли технические трудности. Для того чтобы построить начальную часть графика потребовалось сильно увеличить масштаб, т. к. параметр G имеет очень малую величину. График имеет малый угол подъема, поэтому, чтобы уложить его на один лист, прибегнем к логарифмической шкале оси х (рис.4 ).

Рис. 4

А теперь, внимание!

Пересечение функции графика с ординатой G=1 , дает вторую реперную точку (В). Из этой точки опустим перпендикуляр на ось абсцисс, на которой получим значение координаты х=4,39·10 12 К .

Что это за величина и что она означает? По условию построения – это температура. Проекция точки (В) на ось «х» отражает – максимальную возможную температуру вещества в природе!

Для удобства восприятия представим этот же график в двойных логарифмических координатах (рис.5 ).

Коэффициент G не может иметь значения больше единицы по определению. Данная точка замкнула абсолютную термодинамическую шкалу температуры, начало которой было положено лордом Кельвином в 1848 году.

Из графика видно, что коэффициент G пропорционален температуре тела. Поэтому, постоянная гравитации – есть величина переменная, и в законе всемирного тяготения (1) должна определяться отношением:

G E – универсальный коэффициент (Universal coefficient UC), чтобы не путать с G, запишем его с индексом E (Еergy – энергия). Если температуры взаимодействующих тел разные, то берется их среднее значение.

Θ 1 – температура первого тела

Θ 2 – температура второго тела.

Θ max – максимально возможная температура вещества в природе.

В таком написании коэффициент G E не имеет размерности, что и утверждает его как коэффициент пропорциональности и универсальности.

Подставим G E в выражение (1) и запишем закон всемирного тяготения в общем виде:

Только благодаря энергии, заключенной массах происходит их взаимное притяжение. Энергия – это свойство материального мира совершать работу.

Только благодаря потере энергии на притяжение, осуществляется взаимодействие между космическими телами. Потерю энергии можно отождествить с охлаждением.

Всякое тело (вещество) охлаждаясь, теряет энергию и за счет этого, как ни странно, притягивается к другим телам. Физическая природа тяготения тел заключается в стремлении к наиболее устойчивому состоянию с наименьшей внутренней энергией – это естественное состояние природы.

Формула Ньютона (4) приняла системный вид. Это весьма важно для расчетов космических полетов искусственных спутников и межпланетных станций, а также позволит более точно вычислить, прежде всего, массу Солнца. Произведение G на M известно для тех планет, движение спутников вокруг которых измерялось с высокой точностью. Из движения самих планет вокруг Солнца можно вычислить G и массу Солнца. Погрешности масс Земли и Солнца определяются погрешностью G .

Новый коэффициент позволит, наконец, понять и объяснить, почему траектории орбит первых спутников (пионеров) так далеко не соответствовали расчетным. При запуске спутников не учитывалась температура вылетающих газов. Расчеты показывали меньшую тягу ракеты, а спутники поднимались на более высокую орбиту, например, орбита Explorer-1 оказалась выше расчетной на 360 км. Фон Браун ушел из жизни, так и не поняв этот феномен.

До сего времени постоянная гравитации не имела физического смысла, это был всего лишь вспомогательный коэффициент в законе всемирного тяготения, служащий для связки размерностей. Существующее числовое значение этой константы превращало закон не во всемирный, а в частный, для одного значения температуры!

Гравитационная постоянная – величина переменная. Скажу больше, гравитационная постоянная даже в пределах земного тяготения величина не постоянная, т.к. в гравитационном притяжении участвуют не массы тел, а энергии, заключенные в измеряемых телах. Вот по этой причине не удается достичь высокой точности измерений гравитационной постоянной.

Закон Всемирного Тяготения

Закон Всемирного Тяготения Ньютона и универсальный коэффициент (G E =UC).

Поскольку данный коэффициент безразмерен, формула всемирного тяготения получила размерность dim кг 2 /м 2 – это внесистемная единица, которая возникла вследствие использования масс тел. С размерностью мы пришли к первоначальному виду формулы, которая была обусловлена еще Ньютоном.

Поскольку формула (4) отождествляет силу притяжения, которая в системе СИ измеряется в Ньютонах, то можно воспользоваться размерным коэффициентом (К), как в законе Кулона.

Где К – коэффициент, равный 1. Чтобы привести размерность в СИ, можно использовать ту же размерность, что G , т.е. К= m 3 kg -1 s -2 .

Эксперименты свидетельствуют: тяготение порождается не массой (веществом), тяготение осуществляется с помощью энергий, заключенных в этих массах! Ускорение тел в гравитационном поле не зависят от их массы, поэтому все тела падают на землю с одинаковым ускорением. С одной стороны, ускорение тел пропорционально действующей на них силе и, следовательно, пропорционально их гравитационной массе. Тогда по логике рассуждений формула закона всемирного тяготения должна выглядеть следующим образом:

Где Е 1 и Е 2 – энергия, заключенная в массах взаимодействующих тел.

Поскольку в расчетах весьма трудно определить энергию тел, то оставим в формуле Ньютона (4) массы, с заменой постоянной G на энергетический коэффициент G E .

Максимальную температуру более точно можно вычислить математически из соотношения:

Запишем данное соотношение в числовом виде, учитывая, что (G max =1):

Отсюда: Θ max =4,392365689353438·10 12 К (8)

Θ max –это максимально возможная температура вещества в природе, выше которой, значение невозможно!

Сразу хочу отметить, что это далеко не абстрактная цифра, она говорит о том, что в физической природе все конечно! Физика описывает мир исходя из основополагающих представлений о конечной делимости, конечной скорости света, соответственно, и температура должна быть конечна!

Θ max 4,4 триллиона градусов (4.4 тераКельвинов). Трудно представить, по нашим земным меркам (ощущениям) такую высокую температуру, но ее конечное значение ставит запрет на спекуляции с ее бесконечностью. Такое утверждение приводит нас к заключению, что гравитация также не может быть бесконечной, соотношение G E =Θ/Θ max – все ставит на свои места.

Другое дело, если числитель (3) будет равен нулю (абсолютному нулю) термодинамической шкалы температур, тогда сила F в формуле (5) будет равна нулю. Притяжение между телами должно прекратиться, тела и предметы начнут рассыпаться на составляющие их частицы, молекулы и атомы.

Продолжение в следующей статье...

Для объяснения наблюдаемой эволюции Вселенной в рамках существующих теорий, приходится допустить, что одни фундаментальные постоянные более постоянны, чем другие

В ряду фундаментальных физических констант - скорость света, постоянная Планка, заряд и масса электрона - гравитационная постоянная стоит как-то особняком. Даже история её измерения изложена в знаменитых энциклопедиях Britannica и Larousse , не говоря уж о «Физической энциклопедии» , с ошибками. Из соответствующих статей в них читатель узнает, что её численное значение впервые определил в прецизионных экспериментах 1797–1798 годов знаменитый английский физик и химик Генри Кавендиш (Henry Cavendish , 1731–1810), герцог Девонширский. В действительности Кавендиш измерял среднюю плотность Земли (его данные, кстати, всего лишь на полпроцента отличаются от результатов современных исследований). Располагая же информацией о плотности Земли, мы легко можем вычислить её массу, а зная массу, определить гравитационную постоянную.

Интрига состоит в том, что во времена Кавендиша понятия гравитационной постоянной ещё не существовало, и закон всемирного тяготения не принято было записывать в привычном для нас виде. Напомним, что сила тяготения пропорциональна произведению масс тяготеющих тел и обратно пропорциональна квадрату расстояния между этими телами, коэффициентом же пропорциональности как раз и является гравитационная постоянная. Такая форма записи ньютоновского закона появляется только в XIX столетии. А первые опыты, в которых измерялась именно гравитационная постоянная, были выполнены уже в конце столетия - в 1884 году.

Как отмечает российский историк науки Константин Томилин , гравитационная постоянная отличается от других фундаментальных постоянных ещё и тем, что с ней не связан естественный масштаб какой-либо физической величины. В то же время скорость света определяет предельное значение скорости, а постоянная Планка - минимальное изменение действия.

И только в отношении гравитационной постоянной была высказана гипотеза о том, что её численное значение, возможно, меняется со временем. Впервые эту идею сформулировал в 1933 году английский астрофизик Эдвард Милн (Edward Arthur Milne , 1896–1950), а в 1937 году знаменитый английский физик-теоретик Поль Дирак (Paul Dirac , 1902–1984), в рамках так называемой «гипотезы больших чисел», предположил, что гравитационная постоянная уменьшается с течением космологического времени. Гипотеза Дирака занимает важное место в истории теоретической физики ХХ века, однако никаких более или менее надежных экспериментальных подтверждений её не известно.

С гравитационной постоянной непосредственно связана так называемая «космологическая постоянная», впервые появившаяся в уравнениях общей теории относительности Альберта Эйнштейна . Обнаружив, что эти уравнения описывают либо расширяющуюся, либо сжимающуюся вселенную, Эйнштейн искусственно добавил в уравнения «космологический член», обеспечивавший существование стационарных решений. Его физический смысл сводился к существованию силы, компенсирующей силы всемирного тяготения и проявляющейся лишь на очень больших масштабах. Несостоятельность модели стационарной Вселенной стала для Эйнштейна очевидной после выхода в свет работ американского астронома Эдвина Хаббла (Edwin Powell Hubble , 1889–1953) и советского математика Александра Фридмана , доказавших справедливость иной модели, согласно которой Вселенная расширяется во времени . В 1931 году Эйнштейн отказался от космологической постоянной, назвав её в частной беседе «величайшей ошибкой своей жизни».

История, однако, на этом не закончилась. После того как было установлено, что последние пять миллиардов лет расширение Вселенной происходит с ускорением , вопрос о существовании антигравитации вновь стал актуальным; вместе с ним в космологию вернулась и космологическая постоянная. При этом современные космологи связывают антигравитацию с присутствием во Вселенной так называемой «темной энергии» .

И гравитационная постоянная, и космологическая постоянная, и «темная энергия» были предметом активных дискуссий на недавней конференции в Имперском Колледже Лондона (London Imperial College), посвященной нерешенным проблемам в стандартной модели космологии. Одна из наиболее радикальных гипотез была сформулирована в докладе Филиппа Мангейма (Philip Mannheim) - специалиста по физике элементарных частиц из университета Коннектикута в Шторсе (University of Connecticut in Storrs). Фактически Мангейм предложил лишить гравитационную постоянную статуса универсальной постоянной. Согласно его гипотезе, «табличное значение» гравитационной постоянной определено в лаборатории, находящейся на Земле, и им можно пользоваться только в пределах Солнечной системы . В космологических же масштабах гравитационная постоянная имеет другое, существенно меньшее численное значение, которое можно рассчитать методами физики элементарных частиц.

Представляя свою гипотезу коллегам, Мангейм прежде всего стремился приблизить решение весьма актуальной для космологии «проблемы космологической постоянной». Суть этой проблемы в следующем. По современным представлениям, космологическая постоянная характеризует скорость расширения Вселенной. Её численное значение, найденное теоретически методами квантовой теории поля, в 10 120 раз превышает полученное из наблюдений. Теоретическое значение космологической постоянной столь велико, что при соответствующей скорости расширения Вселенной звезды и галактики просто не успели бы сформироваться.

Свою гипотезу о существовании двух разных гравитационных постоянных - для солнечной системы и для межгалактических масштабов - Мангейм обосновывает следующим образом. По его словам, в наблюдениях на самом деле определяется не сама космологическая постоянная, а некоторая величина, пропорциональная произведению космологической постоянной на гравитационную постоянную. Предположим, что в межгалактических масштабах гравитационная постоянная очень мала, а значение космологической постоянной соответствует расчетному и очень велико. В этом случае произведение двух постоянных вполне может быть малой величиной, что не противоречит наблюдениям. «Возможно, пришло время отказаться считать космологическую постоянную малой величиной, - говорит Мангейм, - просто принять, что она велика, и исходить из этого». В этом случае «проблема космологической постоянной» оказывается решенной.

Предлагаемое Мангеймом решение выглядит простым, но цена, которую придется заплатить за него, очень велика. Как отмечает Зейя Мерали (Zeeya Merali) в статье «Two constants are better than one», опубликованной журналом New scientist 28 апреля 2007 года, вводя два разных численных значения гравитационной постоянной, Мангейм неизбежно должен отказаться от уравнений общей теории относительности Эйнштейна. Кроме того, гипотеза Мангейма делает излишним принятое большинством космологов представление о «темной энергии», поскольку малое значение гравитационной постоянной на космологических масштабах уже само по себе эквивалентно предположению о существовании антигравитации.

Кейт Хорн (Keith Horne) из британского университета св. Андрея (University of St Andrew) приветствует гипотезу Мангейма, поскольку в ней использованы фундаментальные принципы физики элементарных частиц: «Она очень элегантна, и было бы просто замечательно, если бы она оказалась правильной». По словам Хорн, в этом случае нам удалось бы объединить физику элементарных частиц и теорию гравитации в одну весьма привлекательную теорию.

Но с ней согласны далеко не все. New Scientist приводит и мнение космолога Тома Шэнкса (Tom Shanks), что некоторые явления, очень хорошо укладывающиеся в стандартную модель, - например, недавние измерения реликтового излучения , и движения двойных пульсаров, - вряд ли окажутся так же легко объяснимы в теории Мангейма.

Сам Мангейм не отрицает проблем, с которыми сталкивается его гипотеза, замечая при этом, что считает их намного менее значимыми в сравнении с трудностями стандартной космологической модели: «Её разрабатывают сотни космологов, и тем не менее она неудовлетворительна на 120 порядков».

Надо отметить, что Мангейм нашел некоторое количество сторонников, поддержавших его, дабы исключить худшее. К худшему они отнесли выдвинутую в 2006 году гипотезу Пола Штейнхарда (Paul Steinhardt) из Принстонского университета (Princeton University) и Нила Тьюрока (Neil Turok) из Кембриджа (Cambridge University), согласно которой Вселенная периодически рождается и исчезает, причем в каждом из циклов (длящемся триллион лет) происходит свой Большой Взрыв , и при этом в каждом цикле численное значение космологической постоянной оказывается меньше, нежели в предыдущем. Крайне незначительная величина космологической постоянной, зафиксированная в наблюдениях, означает тогда, что наша Вселенная - очень дальнее звено в очень длинной цепи рождающихся и исчезающих миров…



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Образ жизни людей в японии Образ жизни людей в японии Как приготовить творожный десерт с желатином Как приготовить творожный десерт с желатином Пюре из сельдерея – с вершками или корешками? Пюре из сельдерея – с вершками или корешками?