Из чего состоит плазма природное явление. Состояние плазмы. Плазма в полупроводниках

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Плазма - это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой.

Определяется отношением числа ионизированных атомов к их общему числу

В зависимости от степени ионизации плазма подразделяется на слабо ионизированную ( - доли процента), частично ионизированную ( - несколько процентов) и полностью ионизированную ( = 100%). Слабо ионизированной плазмой является ионосфера - верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 10 6 - 10 7 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.

Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма - самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму. Частицы плазмы интенсивно взаимодействуют с внешними электрическими и магнитными полями: из-за большой подвижности заряженные частицы плазмы легко перемещаются под действием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы, вызванное скоплением частиц с зарядом одного знака, быстро исчезает. Возникающие электрические поля перемещают заряженные частицы до тех пор, пока электрическая нейтральность не восстанавливается и электрическое поле не становится равным нулю.

Между заряженными частицами плазмы действуют кулоновские силы, сравнительно медленно убывающие с расстоянием. Каждая частица взаимодействует сразу с большим количеством окружающих частиц. Благодаря этому наряду с хаотическим тепловым движением частицы плазмы могут участвовать в разнообразных упорядоченных движениях. В плазме легко возбуждаются разного рода колебания и волны. Проводимость плазмы увеличивается по мере роста степени ионизации. Электропроводность и теплопроводность полностью ионизированной плазмы зависят от температуры по законам

соответственно. При высокой температуре полностью ионизированная плазма по своей проводимости приближается к сверхпроводникам.

Ионизация атомов межзвездной среды производится излучением звезд и космическими лучами - потоками быстрых частиц, пронизывающими пространство Вселенной по всем направлениям. В отличие от горячей плазмы звезд температура межзвездной плазмы очень мала.

Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую - плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

Плазмы равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает ее значительно большую (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями . "Четвертый состояние вещества" открыл Уильям Крукс в , а название "плазма" предложил Ирвинг Ленгмюр в .

Как и вещество в любом другом агрегатном состоянии плазма является внешне нейтральной, поскольку является смесью положительных и отрицательных ионов в таком количестве и концентрации, что их заряды компенсируют друг друга. Плазма имеет свойства похожи как на газообразное состояние вещества (частицы движутся свободно и расстояние между частицами значительно больше размер частиц), так и на жидкий (большая вязкость) и твердый (электроны движутся свободно от ядер атомов).


1. Формы плазмы

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе около 99,9%) в Вселенной является плазма. Все звезды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). Например, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы , находящейся в "неплазмовому" состоянии (жидком , твердом и газообразном). При этом масса Юпитера составляет всего около 0,1% массы Солнечной системы, а объем еще меньше: всего 10 -15%. При этом мелкие частицы пыли, которые заполняют космическое пространство и несут на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых ионов (см. пылевая плазма).


2. Свойства и параметры плазмы

2.1. Определение плазмы

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма имеет следующие свойства:

, Где - Концентрация заряженных частиц.

2.2. Классификация

Плазма обычно делится при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

2.3. Температура

При чтении научно-популярной литературы читатель часто видит значение температуры плазмы порядка десятков, сотен тысяч или даже миллионов С или К. Для описания плазмы в физике удобно измерять температуру не в С, а в единицах измерения, характерная для энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвинов). Таким образом становится понятно, что температура в "десятки тысяч С" достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.


2.4. Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, которые отдали или поглотили электроны, и больше зависит от температуры . Даже слабо ионизированный газ, в котором менее 1% долей находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = n i / (n i + n a), где n i - концентрация ионов, а n a - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженный плазме n e определяется очевидным соотношением n e = n i, где - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1%). Так как плазмы довольно часто употребляются в технологических процессах, их иногда называют технологическими плазмами. Чаще всего их создают при помощи электрических полей, которые ускоряют электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридування металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистки газов и жидкостей (озонирование воды и сжигание частиц сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизированная (степень ионизации ~ 100%). Обычно именно она подразумевается под "четвертым агрегатным состоянием вещества" . Примером может служить Солнце .


2.5. Плотность

Кроме температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, т.е. число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объема, а число частиц в единице объема). В квазинейтральных плазме плотность ионов связана с ней с помощью среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов . В горячей плазме величина мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в густой, неидеальной плазме характерным параметром плотности становится , Который определяется как отношение среднего расстояния между частицами в боровского радиуса.


2.6. Квазинейтральнисть

Поскольку плазма является очень хорошим проводником , электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциал плазмы вследствие возникновения дебаевской слоя. Такой потенциал называют плавающим потенциалом. Из-за хорошей электрической проводимостью плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В связи с хорошей электрической проводимостью плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших по дебаивську длину и времени большего период плазменных колебаний.

Примером неквазинейтральнои плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счет кулоновского отталкивания.


3. Физические свойства

Характерной особенностью плазмы, в отличие от других агрегатных состояний, является экранирование электростатического взаимодействия. В газе, твердом теле или жидкости поляризация атомов и молекул приводит к уменьшению взаимодействия между зарядами на величину, которая определяется диэлектрической постоянной. В плазме взаимодействие не просто уменьшается, она очень быстро, экспоненциально, затухает с увеличением расстояния между зарядами. Это экранирование предопределения перестройкой плотности зарядов противоположного знака вокруг любого заряда. Благодаря экранированию электроны и ионы в плазме движутся как в усредненном поле, и их можно трактовать как свободные частицы .

Благодаря экранированию внешнее электрическое поле не проникает в плазму на расстоянии, существенно больше, чем длина экранирования . Однако, в плазму может проникать магнитное поле . Плазма, в которой магнитное поле достаточно сильное, чтобы влиять на движение заряженных частиц называется намагниченной. Критерием намагниченности плазмы является отсутствие столкновения между частицами за один оборот в магнитном поле. Часто возникают случаи, когда электроны уже намагниченные, а ионы еще нет. Намагниченная плазма анизотропная - ее свойства зависят от направления относительно магнитного поля.


4. Базовые характеристики плазмы

Все величины приведены в гауссовой СГС одницях за исключением температуры, которая приведена в eV и массы ионов, которая приведена в единицах массы протона ; Z - зарядовое число; k - постоянная Больцмана К - длина волны; γ - адиабатический индекс; ln Λ - кулоновский логарифм.

4.1. Частоты

  • Ларморова частота иона, угловая частота кругового движения иона в плоскости, перпендикулярной к магнитному полю:
  • ионная плазменная частота:
  • частота столкновений электронов
  • частота столкновений ионов

4.2. Длины

  • Де-Бройлева длина волны электрона, длина волны электрона в квантовой механици:
  • минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженные частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, пренебрегая квантово-механические эффекты
  • гиромагнитный радиус электрону, радиус кругового движения электрона в плоскости, перпендикулярной к магнитному полю:
  • гиромагнитный радиус иона, радиус кругового движения иона в плоскости, перпендикулярной к магнитному полю:
  • размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:

4.3. Скорости

  • Скорость ионного звука, скорость продольных ионно-звуковых волн:

4.4. Безразмерные величины

  • Число частиц в сфере Дебая:
  • Отношение Альфвенивськои скорости к скорости света
  • отношение плазменной и ларморивськои частот для электрона
  • отношение плазменной и ларморивськои частот для иона
  • отношение тепловой и магнитной энергий
  • отношение магнитной энергии к энергии покоя ионов

5. Отличие от газа

Основным отличием плазмы от газа является то, что существенной частью плазмы, наряду с атомами , ионами и электронами , является электромагнитное поле . Четко определенного фазового перехода между газом и плазмой не существует. Вещество переходит в состояние плазмы из газа постепенно с повышением степени ионизации.

Присутствие зарядов существенно меняет характер взаимодействия между частицами. Атомы газа взаимодействуют между собой только в случае столкновений, когда расстояния между ними малы. Кулоновское взаимодействие зарядов действует на больших расстояниях, поэтому движение заряженных частиц в плазме коллективный - изменение положения одной частицы вызывает смещение других частиц, которые в свою очередь приводят к дальнейшему смещению еще дальнейших частиц. Эти смещения сопровождаются распространением в плазме электромагнитных волн , вызванных локальным изменением плотности заряда. Для плазмы характерны так называемые плазменные колебания - согласованное распространение в пространстве волны плотности заряда продольной электромагнитной волны . В связи с тем, что плазма состоит минимум из двух типов заряженных частиц: электронов и ионов , существуют различные моды плазменных колебаний - электронные плазменные колебания и ионные колебания, так называемый ионный звук .

На коллективные колебания в плазме существенно влияет внешняя магнитное поле , изменяя их характер, и приводя к существованию значительного числа различных типов волн. В отличие от газа плазма обладает высокой электропроводность .

Свойство Газ Плазма
Электрическая проводимость Крайне мала
Например, воздух является прекрасным изолятором до тех пор, пока не переходит в состояние пламени под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр .
Очень высокая
Количество сортов частиц Один
Газы состоят из подобных друг другу частиц, которые движутся под действием гравитации , а друг с другом взаимодействуют лишь на сравнительно небольших расстояниях.
Два или три, или больше
Электроны, ионы и нейтральные частицы различаются знаком електирчного заряда и могут вести себя независимо друг от друга - иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловской
Столкновение частиц друг с другом приводит к максвелловской распределения скоростей , согласно которому очень малая часть молекул газа имеют относительно большую скорость движения.
Немаксвеливський

Электрические поля имеют другое влияние на скорости частиц, чем столкновения, которые всегда ведут к максвелизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двохтемпературний распределение и убегая электроны.

Тип взаимодействий Бинарные
Как правило двухчастичные столкновения, трьохчасткови столкновения крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние, чем двудольные.

5.1. Минимальные размеры

Срок плазма может применяться только к макроскопической совокупности частиц в которой действуют статистические закономерности взаимокомпенсации и взаимного экранирования зарядов. Поэтому при более точном определении плазмы показывают, что совокупность частиц может считаться плазмой только при условии, если ее размеры значительно больше дебаивський радиус экранирования .

Следовательно, определение плазмы как "газообразной среды, где концентрации положительных и отрицательных зарядов практически одинаковы, а хаотическое движение частиц преобладает над упорядоченным движением их даже в электрическом поле . "- является несколько упрощенным.


6. Естественная и искусственная плазма

В земных условиях в состоянии плазмы находится вещество ионосферы , благодаря плазме крови северное сияние , плазма существует в молниях , в огнях святого Эльма . Пламя тоже большей частью ионизирует вещество, образуя плазму. Свободные электроны в металлах, которые движутся между положительно заряженными ионными остовами, тоже можно считать плазмой - их поведение во внешних электрических и электромагнитных полях аналогична поведению плазмы.

Плазма также создается человеком искусственно везде, где используется электрический разряд : в дуговых и флюоресцентных лампах , в дугах при электросварке , в ионных двигателях , плазменных телевизорах подобное.


6.1. Другое

  • Бомовской коэффициент диффузии
  • Поперечный сопротивление Спитцера

7. Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Общий описание проводниковой жидкости и электромагнитных полей дается в теории магнитогидродинамических явлений или МГД теории.

7.1. Флюидная (жидкостная) модель

В жидкостной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

7.2. Кинетический описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание дает кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнения Больцмана . Уравнение Больцмана применяется для описания плазмы заряженных частиц с кулоновским взаимодействием результате дальнодействующих характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетический описание необходимо применять в случае отсутствия термодинамического равновесия, или в случае присутствия сильных неоднородностей плазмы.

Плазмой называется сильно ионизован­ный газ, в котором концентрации положи­тельных и отрицательных зарядов практи­чески одинаковы. Различают высокотемпе­ратурную плазму, возникающую при сверхвысоких температурах, и газоразряд­ную плазму, возникающую при газовом разряде. Плазма характеризуется сте­пенью ионизации  - отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины  говорят о слабо ( со­ставляет доли процента), умеренно (- несколько процентов) и полностью ( близко к 100 %) ионизованной плазме.

Заряженные частицы (электроны, ионы) газоразрядной плазмы, находясь в ускоряющем электрическом поле, обла­дают различной средней кинетической

энергией. Это означает, что температура Т е электронного газа одна, а ионного Т и - другая, причем Т е и . Несоответствие этих температур указывает на то, что газо­разрядная плазма является неравновес­ной, поэтому она называется также неизо­термической. Убыль числа заряженных частиц в процессе рекомбинации в газо­разрядной плазме восполняется ударной ионизацией электронами, ускоренными электрическим полем. Прекращение дейст­вия электрического поля приводит к исчез­новению газоразрядной плазмы.

Высокотемпературная плазма являет­ся равновесной, или изотермической, т. е. при определенной температуре убыль числа заряженных частиц восполняется в результате термической ионизации. В та­кой плазме соблюдается равенство сред­них кинетических энергий составляющих плазму различных частиц. В состоянии подобной плазмы находятся звезды, звезд­ные атмосферы, Солнце. Их температура достигает десятков миллионов градусов.

Условием существования плазмы яв­ляется некоторая минимальная плотность заряженных частиц, начиная с которой можно говорить о плазме как таковой. Эта плотность определяется в физике плазмы из неравенства L>>D, где L - линейный размер системы заряженных частиц, D - так называемый дебаевский радиус экра­нирования, представляющий собой то рас­стояние, на котором происходит экраниро­вание кулоновского поля любого заряда плазмы.

Плазма обладает следующими основ­ными свойствами: высокой степенью иони­зации газа, в пределе - полной иониза­цией; равенством нулю результирующего пространственного заряда (концентрация положительных и отрицательных частиц в плазме практически одинакова); боль­шой электропроводностью, причем ток в плазме создается в основном электрона­ми, как наиболее подвижными частицами; свечением; сильным взаимодействием с электрическим и магнитным полями; ко­лебаниями электронов в плазме с большой частотой (~=10 8 Гц), вызывающими об­щее вибрационное состояние плазмы; «коллективным» - одновременным взаи-

модействием громадного числа частиц (в обычных газах частицы взаимодейству­ют друг с другом попарно). Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее особым, четвертым, состоянием вещества.

Изучение физических свойств плазмы позволяет, с одной стороны, решать мно­гие проблемы астрофизики, поскольку в космическом пространстве плазма - наиболее распространенное состояние ве­щества, а с другой - открывает принци­пиальные возможности осуществления уп­равляемого термоядерного синтеза. Ос­новным объектом исследований по управ­ляемому термоядерному синтезу является высокотемпературная плазма (~=10 8 К) из дейтерия и трития (см. § 268).

Низкотемпературная плазма (< 10 5 К) применяется в газовых лазерах, в термоэлектронных преобразователях и магнитогидродинамических генераторах (МГД-генераторах) - установках для не­посредственного преобразования тепловой энергии в электрическую, в плазменных ракетных двигателях, весьма перспектив­ных для длительных космических поле­тов.

Низкотемпературная плазма, получае­мая в плазмотронах, используется для рез­ки и сварки металлов, для получения неко­торых химических соединений (например, галогенидов инертных газов), которые не удается получить другими способами, и т. д.

Контрольные вопросы

Какие опыты были поставлены для выяснения природы носителей электрического тока в метал­лах?

Каковы основные идеи теории Друде - Лоренца?

Сравните порядок средних скоростей теплового и упорядоченного движения электронов в ме­таллах (при условиях, близких к нормальным и приемлемых в электротехнике).

Почему тепловое движение электронов не может привести к возникновению электрического тока?

Выведите на основе классической теории электропроводности металлов дифференциальную форму законов Ома и Джоуля - Ленца.

Как классическая теория электропроводности металлов объясняет зависимость сопротивления металлов от температуры?

В чем заключаются трудности элементарной классической теории электропроводности ме­таллов? Каковы границы ее применения?

Что называется работой выхода электрона и чем она обусловлена? От чего она зави­сит?

Какие существуют разновидности эмиссионных явлений? Дайте их определения.

Объясните вольт-амперную характеристику для вакуумного диода.

Можно ли изменять силу тока насыщения вакуумного диода? Если да, то как?

Каким образом можно вырвать электроны из холодного катода? Как называется это явле­ние?

Дайте объяснение качественной зависимости коэффициента вторичной электронной эмиссии диэлектрика от энергии падающих электронов.

Охарактеризуйте процесс ионизации; рекомбинации.

В чем отличие самостоятельного газового разряда от несамостоятельного? Каковы условия, необходимые для его существования?

Может ли возникнуть ток насыщения при самостоятельном газовом разряде?

Охарактеризуйте типы самостоятельного газового разряда. В чем их особенности?

К какому типу газового разряда относится молния?

В чем отличие равновесной плазмы от неравновесной?

Приведите основные свойства плазмы. Каковы возможности ее применения?

Задачи

13.1. Концентрация электронов проводимости в металле равна 2,5 10 22 см -3 . Определить среднюю скорость их упорядоченного движения при плотности тока 1 А/мм 2 .

13.2. Работа выхода электрона из вольфрама составляет 4,5 эВ. Определить, во сколько раз увели­чится плотность тока насыщения при повышении температуры от 2000 до 2500 К. [В 290 раз]

13.3. Работа выхода электрона из металла равна 2,5 эВ. Определить скорость вылетающего из металла электрона, если он обладает энергией 10 -1 8 Дж.

13.4. Воздух между пластинами плоского конденсатора ионизируется рентгеновским излучением. Сила тока, текущего между пластинами, 10 мкА. Площадь каждой пластины конденсатора равна 200 см 2 , расстояние между ними 1 см, разность потенциалов 100 В. Подвижность поло­жительных ионов b + = 1,4 см 2 /(В с) к отрицательных b - = 1,9 см 2 /(В с); заряд каждого иона равен элементарному заряду. Определить концентрацию пар ионов между пластинами, если ток далек от насыщения.

13.5. Ток насыщения при несамостоятельном разряде равен 9,6 пА. Определить число пар ионов, создаваемых в 1 с внешним ионизатором.

* Это явление получило в древности на­звание огней святого Эльма.

* К. Рикке (1845-1915) - немецкий физик.

Кровь человека представлена 2 составляющими: жидкой основой или плазмой и клеточными элементами. Что такое плазма и каков ее состав? Какое функциональное предназначение имеет плазма? Разберем все по порядку.

Все о плазме

Плазма – это жидкость, образованная водой и сухими веществами. Она составляет основную часть крови – около 60 %. Благодаря плазме кровь имеет состояние жидкости. Хотя по физическим показателям (по плотности) плазма тяжелее воды.

Макроскопически плазма представляет собой прозрачную (иногда мутную) однородную жидкость светло-желтого цвета. Она собирается в верхнем участке сосудов, когда форменные элементы оседают. Гистологический анализ показывает, что плазма – межклеточное вещество жидкой части крови.

Мутной плазма становится после употребления человеком жирных продуктов.

Из чего состоит плазма?

Состав плазмы представлен:

  • Водой;
  • Солями и органическими веществами.
  • Белки;
  • Аминокислоты;
  • Глюкозу;
  • Гормоны;
  • Ферментные вещества;
  • Минералы (ионы Na, Cl).

Какой процент от объема плазмы составляет белок?

Это самый многочисленный компонент плазмы, он занимает 8 % всей плазмы. Плазма содержит белок различных фракций.

Основные из них:

  • Альбумины (5 %);
  • Глобулины (3%);
  • Фибриноген (принадлежит глобулинам, 0,4%).

Состав и задачи небелковых соединений в плазме

В плазме содержится:

  • Органические соединения, основу которых составляет азот. Представители: мочевая кислота, билирубин, креатин. Повышение количества азота сигнализирует о развитии азотомии. Это состояние возникает из-за проблем с выведением мочой продуктов обмена либо из-за активного разрушения белка и поступления большого количества азотистых веществ в организм. Последний случай характерен для сахарного диабета, голодания, ожогов.
  • Органические соединения, не содержащие азот. Сюда входит холестерин, глюкоза, молочная кислота. Компанию им составляют еще липиды. Все эти компоненты должны отслеживаться, так как они необходимы для поддержания полноценной жизнедеятельности.
  • Неорганические вещества (Ca, Mg). Ионы Na и Cl отвечают за поддержания постоянного Ph крови. Они также следят за осмотическим давлением. Ионы Ca принимают участие в сокращении мышц и стимулируют чувствительность нервных клеток.

Cостав плазмы крови

Альбумин

Альбумин в плазменной крови – основной компонент (более 50%). Он отличается небольшой молекулярной массой. Местом образования данного белка является печень.

Предназначение альбумина:

  • Переносит жирные кислоты, билирубин, лекарственные средства, гормоны.
  • Берет участие в обмене веществ и образовании белка.
  • Резервирует аминокислоты.
  • Формирует онкотическое давление.

По количеству альбумина медики судят о состоянии печени. Если содержание альбумина в плазме снижено, то это указывает на развитие патологии. Низкое содержание этого белка плазмы у детей увеличивает риск заболеть желтухой.

Глобулины

Глобулины представлены крупными молекулярными соединениями. Они вырабатываются печенью, селезенкой, тимусом.

Выделяют несколько видов глобулинов:

  • α – глобулины. Они взаимодействуют с тироксином и билирубином, связывая их. Катализируют образование белков. Отвечают за транспортировку гормонов, витаминов, липидов.
  • β – глобулины. Эти белки связывают витамины, Fe, холестерол. Переносят катионы Fe, Zn, стероидные гормоны, стерины, фосфолипиды.
  • γ – глобулины. Антитела или иммуноглобулины связывают гистамин и принимают участие в защитных иммунных реакциях. Они производятся печенью, лимфатической тканью, костным мозгом и селезенкой.

Насчитывают 5 классов γ – глобулинов:

  • IgG (около 80% всех антител). Для него характерна высокая авидность (соотношение антитела к антигену). Может проникать через плацентарный барьер.
  • IgM – первый иммуноглобулин, который образуется у будущего малыша. Белок отличается высокой авидностью. Он первый обнаруживается в крови после вакцинации.
  • IgA.
  • IgD.
  • IgE.

Фибриноген – растворимый белок плазмы. Он синтезируется печенью. Под влиянием тромбина белок преобразуется в фибрин – нерастворимую форму фибриногена. Благодаря фибрину в местах, где целостность сосудов была нарушена, образуется сгусток крови.

Остальные белки и функции

Незначительные фракции белков плазмы после глобулинов и альбуминов:

  • Протромбин;
  • Трансферрин;
  • Иммунные белки;
  • С-реактивный белок;
  • Тироксинсвязывающий глобулин;
  • Гаптоглобин.

Задачи этих и других белков плазмы сводятся к:

  • Поддержанию гомеостаза и агрегатного состояния крови;
  • Контролю за иммунными реакциями;
  • Транспортировке питательных веществ;
  • Активации процесса свертывания крови.

Функции и задачи плазмы

Для чего нужна плазма человеческому организму?

Ее функции разнообразны, но в основном они сводятся к 3 главным:

  • Транспортирование кровяных телец, питательных веществ.
  • Осуществление связи между всеми жидкими средами организма, которые располагаются вне кровеносной системы. Эта функция возможна, за счет способности плазмы проникать сквозь сосудистые стенки.
  • Обеспечение гемостаза. Подразумевается контроль над жидкостью, которая останавливается во время кровотечений и удалять образовавшийся тромб.

Применение плазмы в донорстве

Сегодня кровь в цельном виде не переливают: для терапевтических целей отдельно выделяют плазму и форменные компоненты. В пунктах сдачи крови чаще всего сдают кровь именно на плазму.


Система плазмы крови

Как получить плазму?

Получение плазмы из крови происходит с помощью центрифугирования. Метод позволяет отделить плазму от клеточных элементов с помощью специального аппарата, не повреждая их . Кровяные тельца возвращаются донору.

Процедура по сдаче плазмы имеет ряд преимуществ перед простой сдачей крови:

  • Объем кровопотери меньше, а значит, вреда здоровью наносится тоже меньше.
  • Кровь на плазму можно сдать вновь уже через 2 недели.

Существуют ограничения по сдаче плазмы. Так, донор может сдать плазму не более 12 раз за год.

Сдача плазмы занимает не больше 40 минут.

Плазма является источником такого важного материала, как сыворотка крови. Сыворотка – это та же плазма, но без фибриногена, однако с тем же набором антител. Именно они борются с возбудителями различных заболеваний. Иммуноглобулины способствуют скорейшему развитию пассивного иммунитета.

Чтобы получить сыворотку крови, стерильную кровь помещают в термостат на 1 час. Далее полученный сгусток крови отслаивают от стенок пробирки и определяют в холодильник на 24 часа. Полученную жидкость при помощи пастеровской пипетки добавляют в стерильный сосуд.

Патологии крови, влияющие на характер плазмы

В медицине выделяют несколько заболеваний, которые способны влиять на состав плазмы. Все они представляют угрозу для здоровья и жизни человека.

Основными из них являются:

  • Гемофилия. Это наследственная патология, когда наблюдается недостаток белка, который отвечает за свертываемость.
  • Заражение крови или сепсис. Явление, возникающее из-за попадания инфекции непосредственно в кровеносное русло.
  • ДВС-синдром. Патологическое состояние, причиной которого является шок, сепсис, тяжелые повреждения. Характеризуется нарушениями свертывания крови, которые приводят одновременно к кровотечению и образованию тромбов в мелких сосудах.
  • Глубокий венозный тромбоз. При заболевании наблюдается формирование тромбов в глубоких венах (преимущественно на нижних конечностях).
  • Гиперкоагуляция. У пациентов диагностируется чрезмерно высокая свертываемость крови. Вязкость последней увеличивается.

Плазмотест или реакция Вассермана – это исследование, выявляющее наличие антител в плазме к бледной трепонеме. По этой реакции вычисляется сифилис, а также эффективность его лечения.

Плазма – жидкость, имеющая сложный состав, играет важную роль в жизни человека. Она отвечает за иммунитет, свертываемость крови, гомеостаз.

Видео — cправочник здоровья (Плазма крови)

Что такое четвертое состояние вещества, чем оно отличается от трех других и как заставить его служить человеку.

Предположение о существовании первого из состояний вещества, выходящих за рамки классической триады, было высказано в начале ХIХ века, а в 1920-х оно получило свое название – плазма

Алексей Левин

Полтораста лет назад почти все химики и многие физики считали, что материя состоит лишь из атомов и молекул, которые объединяются в более-менее упорядоченные или же совсем неупорядоченные комбинации. Мало кто сомневался, что все или почти все вещества способны существовать в трех разных фазах — твердой, жидкой и газообразной, которые они принимают в зависимости от внешних условий. Но гипотезы о возможности других состояний вещества уже высказывались.

Эту универсальную модель подтверждали и научные наблюдения, и тысячелетия опыта обыденной жизни. В конце концов, каждый знает, что вода при охлаждении превращается в лед, а при нагревании закипает и испаряется. Свинец и железо тоже можно перевести и в жидкость, и в газ, их надо лишь нагреть посильнее. С конца XVIII века исследователи замораживали газы в жидкости, и выглядело вполне правдоподобным, что любой сжиженный газ в принципе можно заставить затвердеть. В общем, простая и понятная картина трех состояний вещества вроде бы не требовала ни поправок, ни дополнений.


В 70 км от Марселя, в Сен-Поль-ле-Дюранс, по соседству с французским исследовательским центром атомной энергии Кадараш, будет построен исследовательский термоядерный реактор ITER (от лат. iter — путь). Основная официальная задача этого реактора — «продемонстрировать научную и технологическую возможность получения энергии термоядерного синтеза для мирных целей». В долговременной перспективе (30−35 лет) на основе данных, полученных во время экспериментов на реакторе ITER, могут быть созданы прототипы безопасных, экологически чистых и экономически прибыльных электростанций.

Ученые того времени немало удивились бы, узнав, что твердое, жидкое и газообразное состояния атомно-молекулярного вещества сохраняются лишь при относительно низких температурах, не превышающих 10 000°, да и в этой зоне не исчерпывают всех возможных структур (пример — жидкие кристаллы). Нелегко было бы и поверить, что на их долю приходится не больше 0,01% от общей массы нынешней Вселенной. Сейчас-то мы знаем, что материя реализует себя во множестве экзотических форм. Некоторые из них (например, вырожденный электронный газ и нейтронное вещество) существуют лишь внутри сверхплотных космических тел (белых карликов и нейтронных звезд), а некоторые (такие как кварк-глюонная жидкость) родились и исчезли в краткий миг вскоре после Большого взрыва. Однако интересно, что предположение о существовании первого из состояний, выходящих за рамки классической триады, было высказано все в том же ХIХ столетии, причем в самом его начале. В предмет научного исследования оно превратилось много позже, в 1920-х. Тогда же и получило свое название — плазма.

От Фарадея до Ленгмюра

Во второй половине 70-х годов XIX века член Лондонского королевского общества Уильям Крукс, весьма успешный метеоролог и химик (он открыл таллий и чрезвычайно точно определил его атомный вес), заинтересовался газовыми разрядами в вакуумных трубках. К тому времени было известно, что отрицательный электрод испускает эманацию неизвестной природы, которую немецкий физик Ойген Голдштейн в 1876 году назвал катодными лучами. После множества опытов Крукс решил, что эти лучи есть не что иное, как частицы газа, которые после столкновения с катодом приобрели отрицательный заряд и стали двигаться в направлении анода. Эти заряженные частицы он назвал «лучистой материей», radiant matter.


Токамак — установка тороидальной формы для удержания плазмы с помощью магнитного поля. Плазма, разогретая до очень высоких температур, не касается стенок камеры, а удерживается магнитными полями — тороидальным, созданным катушками, и полоидальным, которое образуется при протекании тока в плазме. Сама плазма выполняет роль вторичной обмотки трансформатора (первичная — катушки для создания тороидального поля), что обеспечивает предварительный нагрев при протекании электрического тока.

Следует признать, что в таком объяснении природы катодных лучей Крукс не был оригинален. Еще в 1871 году сходную гипотезу высказал крупный британский инженер-электротехник Кромвелл Флитвуд Варли, один из руководителей работ по прокладке первого трансатлантического телеграфного кабеля. Однако результаты экспериментов с катодными лучами привели Крукса к очень глубокой мысли: среда, в которой они распространяются, — это уже не газ, а нечто совершенно иное. 22 августа 1879 года на сессии Британской ассоциации в поддержку науки Крукс заявил, что разряды в разреженных газах «так непохожи на все происходящее в воздухе или любом газе при обычном давлении, что в этом случае мы имеем дело с веществом в четвертом состоянии, которое по свойствам отличается от обычного газа в такой же степени, что и газ от жидкости».

Нередко пишут, что именно Крукс первым додумался до четвертого состояния вещества. В действительности эта мысль гораздо раньше осенила Майкла Фарадея. В 1819 году, за 60 лет до Крукса, Фарадей предположил, что вещество может пребывать в твердом, жидком, газообразном и лучистом состояниях, radiant state of matter. В своем докладе Крукс прямо сказал, что пользуется терминами, заимствованными у Фарадея, но потомки об этом почему-то забыли. Однако фарадеевская идея была все-таки умозрительной гипотезой, а Крукс обосновал ее экспериментальными данными.

Катодные лучи интенсивно изучали и после Крукса. В 1895 году эти эксперименты привели Вильяма Рёнтгена к открытию нового вида электромагнитного излучения, а в начале ХХ века обернулись изобретением первых радиоламп. Но круксовская гипотеза четвертого состояния вещества не вызвала интереса у физиков — скорее всего потому, что в 1897 году Джозеф Джон Томсон доказал, что катодные лучи представляют собой не заряженные атомы газа, а очень легкие частицы, которые он назвал электронами. Это открытие, казалось, сделало гипотезу Крукса ненужной.


Снимок испытательного запуска корейского токамака KSTAR (Korea Superconducting Tokamak Advanced Reactor) с получением «первой плазмы» 15 июля 2008 г. KSTAR, научно-исследовательский проект по изучению возможности термоядерного синтеза для получения энергии, использует 30 сверхпроводящих магнитов, охлаждаемых жидким гелием.

Однако она возродилась, как феникс из пепла. Во второй половине 1920-х будущий нобелевский лауреат по химии Ирвинг Ленгмюр, работавший в лаборатории корпорации General Electric, вплотную занялся исследованием газовых разрядов. Тогда уже знали, что в пространстве между анодом и катодом атомы газа теряют электроны и превращаются в положительно заряженные ионы. Осознав, что подобный газ имеет множество особых свойств, Ленгмюр решил наделить его собственным именем. По какой-то странной ассоциации он выбрал слово «плазма», которое до этого использовали лишь в минералогии (это еще одно название зеленого халцедона) и в биологии (жидкая основа крови, а также молочная сыворотка). В своем новом качестве термин «плазма» впервые появился в статье Ленгмюра «Колебания в ионизованных газах», опубликованной в 1928 году. Лет тридцать этим термином мало кто пользовался, но потом он прочно вошел в научный обиход.

Физика плазмы

Классическая плазма — это ионно-электронный газ, возможно, разбавленный нейтральными частицами (строго говоря, там всегда присутствуют фотоны, но при умеренных температурах их можно не учитывать). Если степень ионизации не слишком мала (как правило, вполне достаточно одного процента), этот газ демонстрирует множество специфических качеств, которыми не обладают обычные газы. Впрочем, можно изготовить плазму, в которой свободных электронов не будет вовсе, а их обязанности возьмут на себя отрицательные ионы.


Для простоты рассмотрим лишь электронно-ионную плазму. Ее частицы притягиваются или отталкиваются в соответствии с законом Кулона, причем это взаимодействие проявляется на больших расстояниях. Именно этим они отличаются от атомов и молекул нейтрального газа, которые чувствуют друг друга лишь на очень малых дистанциях. Поскольку плазменные частицы пребывают в свободном полете, они легко смещаются под действием электрических сил. Для того чтобы плазма находилась в состоянии равновесия, необходимо, чтобы пространственные заряды электронов и ионов полностью компенсировали друг друга. Если это условие не выполняется, в плазме возникают электрические токи, которые восстанавливают равновесие (например, если в какой-то области образуется избыток положительных ионов, туда мгновенно устремятся электроны). Поэтому в равновесной плазме плотности частиц разных знаков практически одинаковы. Это важнейшее свойство называется квазинейтральностью.

Практически всегда атомы или молекулы обычного газа участвуют только в парных взаимодействиях — сталкиваются друг с другом и разлетаются в стороны. Иное дело плазма. Поскольку ее частицы связаны дальнодействующими кулоновскими силами, каждая из них находится в поле ближних и дальних соседей. Это означает, что взаимодействие между частицами плазмы не парное, а множественное — как говорят физики, коллективное. Отсюда следует стандартное определение плазмы — квазинейтральная система большого числа разноименных заряженных частиц, демонстрирующих коллективное поведение.


Мощные ускорители электронов имеют характерную длину в сотни метров и даже километры. Их размеры можно значительно уменьшить, если ускорять электроны не в вакууме, а в плазме — «на гребне» быстро распространяющихся возмущений плотности плазменных зарядов, так называемых кильватерных волн, возбуждаемых с помощью импульсов лазерного излучения.

Плазма отличается от нейтрального газа и реакцией на внешние электрические и магнитные поля (обычный газ их практически не замечает). Частицы плазмы, напротив, чувствуют сколь угодно слабые поля и немедленно приходят в движение, порождая объемные заряды и электрические токи. Еще одна важнейшая особенность равновесной плазмы — зарядовое экранирование. Возьмем частицу плазмы, скажем, положительный ион. Он притягивает электроны, которые формируют облако отрицательного заряда. Поле такого иона ведет себя в соответствии с законом Кулона лишь в его окрестности, а на расстояниях, превышающих определенную критическую величину, очень быстро стремится к нулю. Этот параметр называется дебаевским радиусом экранирования — в честь голландского физика Питера Дебая, который описал этот механизм в 1923 году.

Легко понять, что плазма сохраняет квазинейтральность, лишь если ее линейные размеры по всем измерениям сильно превышают дебаевский радиус. Стоит отметить, что этот параметр возрастает при нагреве плазмы и падает по мере увеличения ее плотности. В плазме газовых разрядов по порядку величины он равен 0,1 мм, в земной ионосфере — 1 мм, в солнечном ядре — 0,01 нм.

Управляемый термояд

В наши дни плазма используется в великом множестве технологий. Одни из них известны каждому (газосветные лампы, плазменные дисплеи), другие представляют интерес для узких специалистов (производство сверхпрочных защитных пленочных покрытий, изготовление микрочипов, дезинфекция). Однако наибольшие надежды на плазму возлагают в связи с работами по осуществлению управляемых термоядерных реакций. Это и понятно. Чтобы ядра водорода слились в ядра гелия, их надо сблизить на расстояние порядка одной стомиллиардной доли сантиметра — а там уже заработают ядерные силы. Такое сближение возможно лишь при температурах в десятки и сотни миллионов градусов — в этом случае кинетической энергии положительно заряженных ядер хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.


Плазма в окружающем мире почти вездесуща — ее можно найти не только в газовых разрядах, но и в ионосфере планет, в поверхностных и глубинных слоях активных звезд. Это и среда для осуществления управляемых термоядерных реакций, и рабочее тело для космических электрореактивных двигателей, и многое, многое другое.

Правда, плазма на основе обычного водорода здесь не поможет. Такие реакции происходят в недрах звезд, но для земной энергетики они бесполезны, поскольку слишком мала интенсивность энерговыделения. Лучше всего использовать плазму из смеси тяжелых изотопов водорода дейтерия и трития в пропорции 1:1 (чисто дейтериевая плазма тоже приемлема, хотя даст меньше энергии и потребует более высоких температур для поджига).

Однако для запуска реакции одного нагрева маловато. Во‑первых, плазма обязана быть достаточно плотной; во‑вторых, попавшие в зону реакции частицы не должны покидать ее слишком быстро — иначе потеря энергии превысит ее выделение. Эти требования можно представить в виде критерия, который в 1955 году предложил английский физик Джон Лоусон. В соответствии с этой формулой произведение плотности плазмы на среднее время удержания частиц должно быть выше некоторой величины, определяемой температурой, составом термоядерного топлива и ожидаемым коэффициентом полезного действия реактора.


Легко увидеть, что существуют два пути выполнения критерия Лоусона. Можно сократить время удержания до наносекунд за счет сжатия плазмы, скажем, до 100−200 г/см3 (поскольку плазма при этом не успевает разлететься, этот метод удержания называют инерционным). Физики отрабатывают эту стратегию с середины 1960-х годов; сейчас ее наиболее совершенной версией занимается Ливерморская национальная лаборатория. В этом году там начнут эксперименты по компрессии миниатюрных капсул из бериллия (диаметр 1,8 мм), заполненных дейтериево-тритиевой смесью, с помощью 192 ультрафиолетовых лазерных пучков. Руководители проекта полагают, что не позднее 2012 года они смогут не только поджечь термоядерную реакцию, но и получить положительный выход энергии. Возможно, аналогичная программа в рамках проекта HiPER (High Power Laser Energy Research) в ближайшие годы будет запущена и в Европе. Однако даже если эксперименты в Ливерморе полностью оправдают возлагаемые на них ожидания, дистанция до создания настоящего термоядерного реактора с инерционным удержанием плазмы все равно останется очень большой. Дело в том, что для создания прототипа электростанции необходима очень скорострельная система сверхмощных лазеров. Она должна обеспечить такую частоту вспышек, зажигающих дейтериево-тритиевые мишени, которая в тысячи раз превысит возможности ливерморской системы, делающей не более 5−10 выстрелов в секунду. Сейчас активно обсуждаются различные возможности создания таких лазерных пушек, но до их практической реализации еще очень далеко.

Токамаки: старая гвардия

Альтернативно можно работать с разреженной плазмой (плотностью в нанограммы на кубический сантиметр), удерживая ее в зоне реакции не менее нескольких секунд. В таких экспериментах вот уже более полувека применяют различные магнитные ловушки, которые удерживают плазму в заданном объеме за счет наложения нескольких магнитных полей. Самыми перспективными считают токамаки — замкнутые магнитные ловушки в форме тора, впервые предложенные А.Д.Сахаровым и И.Е. Таммом в 1950 году. В настоящее время в различных странах работает с дюжину таких установок, крупнейшие из которых позволили приблизиться к выполнению критерия Лоусона. Международный экспериментальный термоядерный реактор, знаменитый ITER, который построят в поселке Кадараш неподалеку от французского города Экс-ан-Прованс, — тоже токамак. Если все пойдет по плану, ITER позволит впервые получить плазму, удовлетворяющую лоусоновскому критерию, и поджечь в ней термоядерную реакцию.


«За последние два десятка лет мы добились огромного прогресса в понимании процессов, которые происходят внутри магнитных плазменных ловушек, в частности — токамаков. В целом мы уже знаем, как движутся частицы плазмы, как возникают неустойчивые состояния плазменных потоков и до какой степени увеличивать давление плазмы, чтобы ее все-таки можно было удержать магнитным полем. Были также созданы новые высокоточные методы плазменной диагностики, то есть измерения различных параметров плазмы, — рассказал «ПМ» профессор ядерной физики и ядерных технологий Массачусетского технологического института Йен Хатчинсон, который свыше 30 лет занимается токамаками. — К настоящему времени в крупнейших токамаках достигнуты мощности выделения тепловой энергии в дейтериево-тритиевой плазме порядка 10 мегаватт на протяжении одной-двух секунд. ITER превзойдет эти показатели на пару порядков. Если мы не ошибаемся в расчетах, он сможет выдавать не менее 500 мегаватт в течение нескольких минут. Если уж совсем повезет, энергия будет генерироваться вообще без ограничения времени, в стабильном режиме».

Профессор Хатчинсон также подчеркнул, что ученые сейчас хорошо понимают характер процессов, которые должны происходить внутри этого огромного токамака: «Мы даже знаем условия, при которых плазма подавляет свои собственные турбулентности, а это очень важно для управления работой реактора. Конечно, необходимо решить множество технических задач — в частности, завершить разработку материалов для внутренней облицовки камеры, способных выдержать интенсивную нейтронную бомбардировку. Но с точки зрения физики плазмы картина достаточно ясна — во всяком случае мы так считаем. ITER должен подтвердить, что мы не ошибаемся. Если все так и будет, придет черед и токамаку следующего поколения, который станет прототипом промышленных термоядерных реакторов. Но сейчас об этом говорить еще рано. А пока мы рассчитываем, что ITER начнет работать в конце этого десятилетия. Скорее всего, он сможет генерировать горячую плазму никак не раньше 2018 года — во всяком случае по нашим ожиданиям». Так что с точки зрения науки и техники у проекта ITER неплохие перспективы.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии Как приготовить творожный десерт с желатином Как приготовить творожный десерт с желатином