Получены новые результаты старого эксперимента стэнли миллера. Опыт миллера С миллер биология

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Вулканические выбросы и разряды молний - условия самопроизвольного синтеза разнообразных биологических молекул. Фото извержения вулкана в Исландии с сайта www.thunderbolts.info Последователи Стэнли Миллера, поставившего в 50-х годах знаменитые опыты по имитации синтеза органики в первичной атмосфере Земли, вновь обратились к результатам старых экспериментов. Оставшиеся от тех лет материалы они исследовали новейшими методами. Выяснилось, что в экспериментах, имитировавших вулканические выбросы парогазовой смеси, синтезировался широкий спектр аминокислот и других органических соединений. Их разнообразие оказалось больше, чем это представлялось в 50-е годы. Этот результат акцентирует внимание современных исследователей на условиях синтеза и накопления первичной высокомолекулярной органики: синтез мог активизироваться в районах извержений, а вулканические пеплы и туфы могли стать резервуаром биологических молекул. В мае 1953 года в журнале Science были опубликованы результаты знаменитого эксперимента по синтезу высокомолекулярных соединений из метана, аммиака и водорода под действием электрических разрядов (см. Stanley L. Miller. A Production of Amino Acids Under Possible Primitive Earth Conditions (PDF, 690 Кб) // Science. 1953. V. 117. P. 528). Установка для опытов представляла собой систему колб, в которых циркулировал водяной пар. В большой колбе на вольфрамовых электродах генерировался электрический разряд. Опыт длился неделю, по истечении которой вода в колбе приобрела желто-коричневый оттенок и стала маслянистой. Слева: аппарат Стэнли Миллера для опытов с электрическими разрядами в горячем паре. Справа: схема аппарата. Выбросы пара через форсунку должны имитировать парогазовые смеси при вулканических извержениях. Изображения из обсуждаемых статей в Science Миллер анализировал состав органики с помощью бумажной хроматографии - метода, тогда только вошедшего в обиход биологов и химиков. Миллер обнаружил в растворе глицин, аланин и другие аминокислоты. В то же самое время подобные опыты проводились Кеннетом Алфредом Уайлдом (см. Kenneth A. Wilde, Bruno J. Zwolinski, Ransom B. Parlin. The Reaction Occurring in CO2–H2O Mixtures in a High-Frequency Electric Arc (PDF, 380 Кб) // Science. 10 July 1953. V. 118. P. 43–44) с той разницей, что вместо смеси газов с восстановительными свойствами в колбе был углекислый газ - окислитель. В отличие от Миллера, Уайлд не получил никаких значимых результатов. Миллер и вслед за ним многие ученые исходили из восстановительной, а не окислительной атмосферы в начале существования Земли. Логическая цепочка их рассуждений была такой: мы стоим на позициях, что жизнь зародилась на Земле; для этого нужны были органические вещества; они должны были быть продуктом земного синтеза; если в восстановительной атмосфере синтез идет, а в окислительной - не идет, значит первичная атмосфера была восстановительной. Помимо гипотезы восстановительной атмосферы на ранней Земле, миллеровские опыты доказывают еще и принципиальную возможность самопроизвольного синтеза необходимых биологических молекул из простых составляющих. Эта гипотеза получила серьезное подкрепление после опыта Хуана Оро (Joan Oró; см. J. Oró. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions // Nature. 16 September 1961. V. 191. P. 1193–1194), который в 1961 году в установку Миллера ввел синильную кислоту и на выходе получил нуклеотид аденин - одно из четырех оснований молекул ДНК и РНК. Возможность самопроизвольного синтеза высокомолекулярной органики, включая нуклеотиды и аминокислоты, стала мощной опорой теории Опарина о самозарождении жизни в первичном бульоне. После этих экспериментов прошла целая биологическая эпоха. Отношение к теории первичного бульона стало более настороженным. В течение прошедшего полстолетия ученые не могли придумать механизма избирательного синтеза хиральных молекул в неживой природе и наследования этого механизма в живых организмах. Идея восстановительной атмосферы на ранней Земле тоже была подвергнута решительной критике. Не появилось решения главного вопроса: как из неживых молекул сложилось самовоспроизводящееся живое существо? Появились аргументы для теории внеземного происхождения жизни. Однако в последние годы ученые достигли ощутимых успехов в развитии теории зарождения жизни из неорганической материи. Основные достижения в этом направлении - это, во-первых, открытие роли РНК в становлении биоорганического катализа; теория РНК-мира приближает нас к ответу на вопрос, как из неживой органики сложились живые системы. Во-вторых, открытие каталитических функций неорганических природных минералов в реакциях высокомолекулярного органического синтеза, доказательство важнейшей роли катионов металлов в метаболизме живого. В-третьих, доказательство избирательного синтеза хиральных изомеров в естественных земных условиях (см. например, Открыт новый способ получения органических молекул», «Элементы», 06.10.2008). Иными словами, теория абиогенеза получила новые обоснования. С этих позиций интересны результаты переизучения материалов, оставшихся от старых экспериментов Миллера, до сих пор хранившихся, как это ни странно, в запечатанных колбах в его лаборатории. В 50-е годы Стэнли Миллер поставил три эксперимента, имитировавших различные варианты условий зарождения жизни. Самый известный из них, вошедший во все школьные учебники, - это образование биомолекул при пропускании через пар электрических разрядов. Колба моделировала условия испарения вод над океаном во время гроз. Второй - образование биомолекул при слабой ионизации газов - при так называем тихом разряде. Это была модель ионизированной, насыщенной паром атмосферы ранней Земли. В третьем эксперименте пар подавался под большим давлением, поступая в колбу в виде мощных струй, через которые пропускали, как и в первом случае, электрические разряды. Этот случай имитировал вулканические выбросы и образование горячих вулканических аэрозолей. Биологи опирались на результаты только первого, наиболее удачного опыта, потому что в остальных двух опытах синтезировалось мало органики и разнообразие аминокислот и других соединений было невелико. Новые результаты анализа опыта Миллера с выбросами пара. Подчеркнуты аминокислоты, не обнаруженные Миллером. Обозначения аминокислот стандартные. Рис. из обсуждаемой статьи в Science The Miller Volcanic Spark Discharge Experiment Переизучение этих материалов после смерти Миллера в 2007 году взяли на себя специалисты из Америки и Мексики - из Индианского университета (Блумингтон), Института Карнеги (Вашингтон), Отдела исследования Солнечной системы Центра космических полетов имени Годдарда (Гринбелт), Скриппсовского океанографического института (Ла-Холья, Калифорния) и Независимого мексиканского университета (Мехико). В их распоряжении оказались 11 колб, соответствующим образом промаркированных Миллером. Все они содержали высушенные материалы третьего эксперимента, того, который имитировал вулканические выбросы. Ученые развели осадок дистиллированной водой и проанализировали смесь, теперь уже с помощью высокоэффективной жидкостной хроматографии и масс-спектрометрии. Современные методы выявили высокое разнообразие «биологических» молекул. Оно оказалось даже выше, чем в первом эксперименте. Очевидно, что методы бумажной хроматографии менее чувствительны, чем жидкостной, поэтому теперь выявились и те соединения, которые присутствовали в малых концентрациях. Новые результаты старого опыта будут, по-видимому, приняты к сведению биохимиками, микробиологами и вулканологами. Вулканические выбросы представляют собой аэрозоли, состоящие на 96-98% из воды и содержащие аммиак, азот, угарный газ, метан. В вулканических выбросах всегда в большой концентрации присутствуют соединения металлов - железа, марганца, меди, цинка, никеля и др., которые участвуют в ферментативных реакциях в живых системах. Вулканические пеплы и туфы, как показали многочисленные эксперименты, стимулируют рост и анаэробной, и аэробной микрофлоры. При этом в среду для культивирования даже не обязательно добавлять различные жизненно необходимые элементы - бактерии их сами добудут из нее. В древнейшие времена дополнительный синтез органики мог косвенно способствовать росту жизни на изверженных субстратах. Кроме того, химия аэрозолей - это малоизученная область, поэтому тем более интересен результат аэрозольного синтеза высокомолекулярных биологических молекул. В этом смысле химики и вулканологи могут привнести весомый вклад в обсуждение проблемы зарождения земной жизни. Авторы сообщения замечают, что версия о восстановительной атмосфере ранней Земли сейчас находится под сомнением. Однако вулканические выбросы и грозы - это постоянное явление на Земле, в древнейшие эпохи интенсивность и того и другого была предположительно выше, чем в современном мире. Поэтому, какой бы ни была атмосфера на архейской и протерозойской Земле, извержения вулканов всегда создают условия для синтеза биологических молекул. Источники: 1) Adam P. Johnson, H. James Cleaves, Jason P. Dworkin, Daniel P. Glavin, Antonio Lazcano, Jeffrey L. Bada. The Miller Volcanic Spark Discharge Experiment // Science. 17 October 2008. V. 322. P. 404. DOI: 10.1126/science.1161527. 2) Jeffrey L. Bada, Antonio Lazcano. Prebiotic Soup-Revisiting the Miller Experiment // Science. 2 May 2003. V. 300. P. 745–746. DOI: 10.1126/science.1085145. См. также: В. Н. Пармон. Новое в теории появления жизни, «Химия и жизнь» №5, 2005. Елена Наймарк

О том, за что можно не любить эксперименты, о пользе семинаров, благородстве научного руководителя и возникновении живого на фоне холодной войны рассказываем в нашей рубрике «История науки».

Стэнли Миллер родился в 1930 году в семье юриста и школьной учительницы. С детства мальчик любил читать, хорошо учился, любил природу, ходил в походы с бойскаутами. Вслед за братом поступил в Калифорнийский университет так же, как он, изучать химию. С легкостью пройдя университетский курс, он перешел в Чикагский университет, предложивший ему место ассистента (после смерти отца он уже не мог позволить себе просто учиться). Там начались долгие и непростые поиски темы для дальнейшей работы, места, куда приложить свои знания и светлый ум.

Считая эксперименты делом «пустым, затратным по времени и не столь уж важным» (а может быть, просто затратным), Миллер обратился к теоретическим проблемам. Одним из профессоров, чья работа привлекла внимание Миллера, стал Эдвард Теллер, изучавший синтез химических элементов в звездах.

Однако тот Стэнли Миллер, о котором сегодня идет речь, «родился» осенью 1951 года, когда он стал посещать семинары профессора Гарольда Юри, уже на тот момент Нобелевского лауреата (за открытие дейтерия). Юри к тому времени увлекся космохимией, эволюцией химических элементов в звездах и планетах, составил предположение о составе ранней атмосферы Земли. Он полагал, что синтез органических веществ возможен в средах, подобных древней земной атмосфере. Эти идеи увлекли Миллера (настолько, что он помнил подробности лекций и десятилетия спустя), и он перешел со своими исследованиями к Юри.

Гарольд Юри

Wikimedia Commons

Тем самым Миллер занялся проблемой, которой притягивала множество ученых. О том, может ли живое возникнуть из неживого, спорили Уильям Гарвей, Франческо Реди, Луи Пастер, Ладзаро Спалланцани, Якоб Берцелиус, Фридрих Велер (и это даже не все, о ком мы уже писали в «Истории науки»).

Споры не утихли и в XX веке. Здесь большой вклад внес наш соотечественник, Александр Опарин. В 20-х годах он опубликовал статью «О возникновении жизни», в которой изложил свою теорию зарождения живого из «первичного бульона». Опарин предположил, что возникновение органических веществ возможно в зонах повышенной концентрации высокомолекулярных соединений. Когда такие зоны обзаводились оболочкой, частично отделяющей их от окружающей среды, они превращались в коацерватные капли - ключевое понятие теории Опарина - Холдейна (примерно в это же время схожие идеи развивал британский биолог Джон Холдейн). Внутри этих капель могут образовываться простые органические вещества, а вслед за ними и сложные соединения: белки, аминокислоты. Поглощая вещества из внешней среды, капли могут расти и делиться.

Однако вернемся к Миллеру. Его энтузиазм и желание устроить какой-нибудь эксперимент и проверить теорию у Юри поначалу сочувствия не нашли: не стоит аспиранту лезть в неизведанное, лучше, если он займется чем-нибудь попроще. В итоге профессор уступил, но дал Миллеру год. Не будет результатов, тему придется сменить.

Миллер принялся за работу: взял данные Юри о составе ранней атмосферы и предположил, что синтез необходимых для возникновения жизни соединений можно стимулировать электрическим разрядом (считается, что молнии были нередки на Земле и в древности). Установка состояла из двух колб, соединенных стеклянными трубками. В нижней колбе была жидкость, в верхней - смесь газов: метана, аммиака и водорода - и пара. К верхней колбе также были подсоединены электроды, создающие электрический разряд. В разных местах эту систему подогревали и охлаждали, и вещество непрерывно циркулировало.

Эксперимент Миллера - Юри

Wikimedia Commons

Через неделю остановили эксперимент и вынули колбу с охлажденной жидкостью. Миллер обнаружил, что 10-15% углерода перешло в органическую форму. С помощью бумажной хроматографии он заметил следы глицина (они появились уже на второй день эксперимента), альфа- и бета-аминопропионовой кислоты, аспаргиновой и альфа-аминомасляной кислот.

Миллер показал Юри эти скромно звучащие, но так много значащие результаты (они доказывали возможность появления органики в условиях ранней Земли), и ученые, хотя и не без проблем, опубликовали их в журнале Science. В авторах значился лишь Миллер, иначе, опасался Юри, все внимание достанется ему, нобелиату, а не настоящему автору открытия.

  • III. ЭКСПЕРИМЕНТАЛЬНОЕ УСТАНОВЛЕНИЕ ВНУШЕНИЯ НА РАССТОЯНИИ.
  • IV. Экспериментальное определение параметров схемы замещения трансформаторов.
  • Анализ ситуации путем личного наблюдения и проведения эксперимента
  • Взаимосвязь методологии, методов и методик психологического экспериментального исследования.
  • Основная статья: Эксперимент Миллера-Юри

    Одна из самых известных гипотез эволюции была опубликована в двадцатые годы XX столетия русским исследователем А. И. Опариным и британским исследователем Дж. Холдейном. Теория утверждала, что условия на Земле того времени благоприятствовали химическим реакциям. Из неорганических соединений в атмосфере и море должны были синтезироваться сложные органические соединения. Необходимая энергия поставлялась очень интенсивным ультрафиолетовым облучением, которое могло беспрепятственно проникать в атмосферу в связи с малым содержанием в ней O 2 и O 3 .

    В 1953 году эта теория была обоснована химиками Стэнли Миллером и Гарольдом К. Юри очень хорошими результатами эксперимента с первичным бульоном. Опытным путём ими было доказано, что в среде, похожей на среду с предположительными пребиотическими условиями, посредством притока энергии извне (молнии), из неорганических соединений (вода, метан, аммиак и водород) могут возникнуть аминокислоты и более простые карбоновые и жирные кислоты - одни из важнейших строительных элементов биомолекул (причём современные исследования сохранившегося содержимого колб Миллера показало, что там содержалось большее количество аминокислот, чем смог выявить Миллер ).

    В более поздних, в большинстве случаев, более сложно построенных опытах с первичным бульоном экспериментаторы смогли получить как все важнейшие строительные элементы живых существ - аминокислоты, жиры, сахара, нуклеотиды, - так и более сложные органические соединения - порфины и изопреноиды [источник не указан 1264 дня ] .

    По замечанию биохимика Роберта Шапиро, аминокислоты, синтезированные Миллером и Юри, значительно менее сложные молекулы, чем нуклеотиды. Самая простая из тех 20 аминокислот, что входят в состав природных белков, имеет всего два углеродных атома, а 17 аминокислот из того же набора - шесть и более. Аминокислоты и другие молекулы, синтезированные Миллером и Юри, содержали не более трёх атомов углерода. А нуклеотиды в процессе подобных экспериментов удалось получить лишь в 2009 г .

    Хотя этим была показана возможность естественного образования органических молекул, эти результаты сегодня иногда подвергаются критическим оценкам. В эксперименте с первичным бульоном исходили из того, что атмосфера на тот период времени имела щелочной характер, что соответствовало научным представлениям того времени. Сегодня же исходят из слабощелочного или даже нейтрального характера атмосферы, хотя вопрос ещё не окончательно решён и обсуждаются также локальные химические отклонения атмосферных условий, например в окрестностях вулканов. Позднейшими экспериментами была доказана возможность появления органических молекул и в этих условиях, даже таких, которые не получились при первых опытах, но в значительно меньших количествах. Этим часто аргументируется, что происхождение органических молекул другим путём, играло как минимум дополнительную роль. Приводятся также теории происхождения органики в окрестностях гидротермальных источников срединно-океанических хребтов.



    В качестве аргумента против происхождения органических молекул из первичного бульона иногда приводят тот факт, что во время опыта получается рацемат, то есть равная смесь из L и D-форм аминокислот. Соответственно, должен был существовать естественный процесс, в котором отдавалось предпочтение определённому варианту хиральных молекул. Некоторые космобиологи утверждают, что легче доказать происхождение органических соединений в космосе, так как, по их мнению, фотохимические процессы с циркулярно-поляризированным излучением, например от пульсаров, в состоянии уничтожить молекулы только определённого вращения. И действительно, у найденных в метеоритах хиральных органических молекул преобладали на 9 % левовращающие. Однако в 2001 году Alan Saghatelian показал, что самореплицирующиеся пептидные системы тоже в состоянии эффективно отбирать молекулы определённого вращения в рацематной смеси, что делает возможным и земное происхождение полимеров из определённых оптических изомеров.

    Схема эксперимента.

    Эксперимент Миллера - Юри - известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции . Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном , о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри . Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

    Эксперимент Миллера - Юри считается одним из важнейших опытов в исследовании происхождения жизни на Земле. Первичный анализ показал наличие в конечной смеси 5 аминокислот . Однако, более точный повторный анализ, опубликованный в 2008 году , показал, что эксперимент привёл к образованию 22 аминокислот.

    Описание эксперимента

    Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в цикл. Заполнявший систему газ представлял собой смесь из метана (CH 4), аммиака (NH 3), водорода (H 2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась и водные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию.

    После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10-15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара , липиды и предшественники нуклеиновых кислот . Эксперимент повторялся несколько раз в 1953-1954 годах. Миллер использовал два варианта аппарата, один из которых, т. н. «вулканический», имел определённое сужение в трубке, что приводило к ускоренному потоку водных паров через разрядную колбу, что, по его мнению, лучше имитировало вулканическую активность. Интересно, что повторный анализ проб Миллера, проведённый через 50 лет профессором и его бывшим сотрудником Джеффри Бейдом (англ. Jeffrey L. Bada ) с использованием современных методов исследования, обнаружил в пробах из «вулканического» аппарата 22 аминокислоты, то есть гораздо больше, чем считалось ранее.

    Миллер и Юри основывались в своих экспериментах на представлениях 1950-х годов о возможном составе земной атмосферы. После их экспериментов многие исследователи проводили подобные опыты в различных модификациях. Было показано, что даже небольшие изменения условий процесса и состава газовой смеси (например, добавления азота или кислорода) могли привести к очень существенным изменениям как образующихся органических молекул, так и эффективности самого процесса их синтеза. В настоящее время вопрос о возможном составе первичной земной атмосферы остаётся открытым. Однако, считается, что высокая вулканическая активность того времени способствовала выбросу также таких компонентов как диоксид углерода (CO 2), азот, сероводород (H 2 S), двуокись серы (SO 2).

    Критика выводов эксперимента

    Выводы о возможности химической эволюции, сделанные на основании данного эксперимента, подвергаются критике. Основным аргументом критиков является отсутствие единой хиральности у синтезированных аминокислот. Действительно, полученные аминокислоты представляли собой практически равную смесь стереоизомеров , в то время как для аминокислот биологического происхождения, в том числе входящих в состав белков, весьма характерно преобладание одного из стереоизомеров. По этой причине дальнейший синтез сложных органических веществ, лежащих в основе жизни, непосредственно из полученной смеси затруднён. По мнению критиков, хотя синтез важнейших органических веществ был явно продемонстрирован, далекоидущий вывод о возможности химической эволюции, сделанный непосредственно из этого опыта, не вполне обоснован.

    См. также

    Примечания

    Литература

    • MILLER SL (May 1953). "A production of amino acids under possible primitive earth conditions ". Science (New York, N.Y.) 117 (3046): 528–9. PMID 13056598 .
    • MILLER SL, UREY HC (July 1959). "Organic compound synthesis on the primitive earth ". Science (New York, N.Y.) 130 (3370): 245–51. PMID 13668555 .
    • Lazcano A, Bada JL (June 2003). "

    Происхождение жизни на Земле - одна из самых волнующих загадок современной науки. На вопрос, почему эта жизнь в конце концов зародилась, ответить, судя по всему, предстоит астрофизикам. Рассказать же о процессе природного синтеза первых простейших биогенных молекул способны химики.

    Стоит сказать, что гипотезы о первых шагах молекул жизни по Земле появляются регулярно. Одни касаются процессов самоорганизации , другие вовсю эксплуатируют довольно противоречивые природные свидетельства и так далее. Между тем основным оружием ученого со времён Галилея остается эксперимент.

    Эксперимент по воссозданию земных условий, приведших к синтезу первых органических молекул, ставших в итоге кирпичиками мироздания, был поставлен ом более полувека назад. О некоторых его результатах мы смогли узнать только сегодня.

    Публикация в журнале Science описывает данные, ускользнувшие от ученых 50 с лишним лет назад.

    Тогда нобелевский лауреат Гарольд Юри, получивший престижную премию за открытие тяжелой воды и увлекшийся впоследствии проблемами космохимии, вдохновил одного из своих подопечных, Стэнли Миллера, теорией доисторического абиотического супа, из которого под влиянием внешних факторов получились первые органические молекулы.

    Молодой сотрудник Университета Чикаго, Стэнли Миллер, проводит свои знаменитые эксперименты по синтезу биологических молекул. 1953 год. //Архив Химического факультета Калифорнийского университета в Сан-Диего

    Согласно представлениям того времени, земная атмосфера была сильно отличной от нынешней. Она содержала много метана и аммиака, паров воды и была практически полностью лишена кислорода, что облегчало доступ ультрафиолетового излучения Солнца к поверхности планеты. Кроме того, тогда гораздо ярче проявляла себя вулканическая активность, и грозы, сопровождаемые сильнейшими электрическим разрядами, были нередки. Такие условия как нельзя лучше подходят для многих реакций органического синтеза, что и натолкнуло ученых на мысли о биогенном будущем подобных реакций.

    Для того чтобы воссоздать подобные реакции в лаборатории в условиях, приближенных к тем, что царили на Земле миллиарды лет назад, Миллер, работавший тогда в Чикагском университете, разработал оригинальный химический прибор. Он состоит из большой реакционной колбы, содержащей пары метана, аммиака и водорода, в которую снизу нагнетается горячий водяной пар. Сверху же расположены вольфрамовые электроды, генерирующие искровой разряд. Моделируя таким образом условия грозы в окрестностях действующего прибрежного вулкана, Миллер надеялся получить в ходе синтеза биологические молекулы.

    После окончания синтеза Миллер сумел обнаружить в реакционной колбе пять аминокислот - основных строительных блоков всех белков: аспарагиновую кислоту, глицин, альфа-аминомасляную кислоту и два оптических изомера аланина.

    Два года спустя Миллер повторил свои эксперименты в аппаратах с измененной конфигурацией. Один из них подразумевал использование струйного насоса с соплом, с силой вталкивающим насыщенный водяной пар в реакционную колбу. Таким образом Миллер надеялся сделать условия эксперимента максимально приближенными к условиям извержения подводного вулкана в грозу. Третий же аппарат вместо искрового разряда давал тлеющий. Ученый сумел показать наличие нескольких дополнительных аминокислот в смеси продуктов реакции, а также продемонстрировал наличие нескольких дополнительных карбоновых и гидроксикилот.

    Однако в те годы Миллеру приходилось полагаться на очень примитивное по сегодняшним меркам аналитическое оборудование. Потому он с группой коллег повторил свои опыты в 1972 году с использованием оборудования существенно более совершенного. Правда, тогда Миллер провел синтез в приборе, разработанном еще для публикации в 1953 году, сочтя, что аппараты с соплом и тлеющим разрядом особой продуктивностью не отличаются.

    Прибор Миллера. Кипящая вода (1) создает поток пара, который усиливатся соплом аспиратора (врезка), искра, проскакивающая между двумя электродами (2), запускает набор химических превращений, холодильник (3) охлаждает поток водяного пара, содержащего продукты реакции, которые оседают в ловушке (4).// Нед Шоу, Университет Индианы.

    Стэнли Миллер умер 20 мая 2007 года. Разбирая его дневники и архивы, близкие и коллеги обнаружили записи, относящиеся к работам 50-х годов, а также несколько склянок с подписями.

    Подписи указали на то, что содержимое склянок - не что иное, как продукты синтеза в аппаратах Миллера, сохраненные автором в неприкосновенном виде.

    Ими заинтересовался Джеффри Бада, выпускник химической школы Миллера, ныне тоже уже старичок, работающий в Институте океанологии при Калифорнийском университете в Сан-Диего.

    Согласно записям Миллера, никогда прежде не публиковавшимся, синтез в аппарате с соплом давал несколько больший выход продуктов. Именно эти образцы и заинтересовали Баду и его коллег, авторов свежей публикации, в распоряжении которых оказались самые совершенные инструментальные методы.

    Для того чтобы заново изучить состав продуктов синтеза, ученые растворили содержимое склянок в дважды дистиллированной деионизированной воде и провели высокоэффективную жидкостную хроматографию, результаты которой проанализировали на масс-спектрометре с детектором, фиксирующем время полета ионизированных частиц. Такой метод анализа позволяет идентифицировать компоненты смеси даже в субпикомолярной концентрации (менее чем 10 --12 моля на литр).

    Оказалось, что смесь продуктов содержала вовсе не пять аминокислот, а двадцать две! Плюс пять молекул аминов, которые Миллер просто не мог идентифицировать полвека назад.

    Изучив аналогичным методом остальные склянки, ученые убедились, что в результате этих экспериментов набор продуктов синтеза был менее разнообразен.

    Впрочем, сегодня геохимики утверждают, что атмосфера Земли никогда не была такой, какой её считали 50 лет назад. Она была менее основной и менее восстановительной, потому на опыты Миллера нельзя полагаться как на эксперимент, доказывающий теорию абиотического супа. В то же самое время авторы публикации уверены, что если на всей Земле и не существовало подходящих условий, они, несомненно, должны были сопровождать хотя бы точечные извержения вулканов, продолжительность которых миллиарды лет назад позволяла приобщиться к делу синтеза первых органических молекул и грозам. Эти молекулы могли собираться в лагунах вулканических островов, где морской прилив и солнечный ультрафиолет довершали дело конденсации альдегидов, кетонов и других молекул в длинные полимерные цепочки.

    Популярность теории древнего абиотического супа в связи с работами Миллера позволила ей попасть даже в школьный курс природоведения, однако современные свидетельства говорят в пользу того, что жизнь изначально зародилась все же не на поверхности планеты. Здешние переменчивые условия были слишком экстремальны даже для того, чтобы жизнь, вопреки всему зародившаяся в маленьких вулканических островах стабильности, распространилась, развилась в современные формы.

    Подлинная стабильность в то время существовала только на дне океана, где в зонах срединных океанических хребтов тепло недр Земли неспешно питало базовые химические реакции.

    Срединные океанические хребты были открыты практически одновременно с опытами Миллера, а детальное их исследование - это вообще достижения последних десяти-двадцати лет, сделавших доступными исследования морского дна с помощью глубоководных обитаемых аппаратов. Появись такие аппараты раньше лет на тридцать - и теория абиотического супа могла быть и вовсе не выдвинута.

    Повторить опыты Миллера в условиях, больше напоминающих современные представления о далёком прошлом Земли, ещё предстоит. И не исключено, что кому-то из нынешних аспирантов химических факультетов суждено стать не менее знаменитым, чем Стэнли Миллеру.



    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования