Высшие и низшие кинематические пары примеры. Кинематическая пара. Понятие о структурном синтезе и анализе

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

вращательные;

поступательные;

винтовые;

сферические.


Условные обозначения звеньев и кинематических пар на кинематических схемах.

Кинематической схемой механизма называется графическое изображение в выбранном масштабе взаимного расположения звеньев, входящих в кинематические пары, с применением условных обозначений по ГОСТ 2770-68. Большими буквами латинского алфавита на схемах обозначаются центры шарниров и другие характерные точки. Направления движения входных звеньев отмечаются стрелками. Кинематическая схема должна иметь все параметры необходимые для кинематического исследования механизма: размеры звеньев, числа зубьев зубчатых колес, профили элементов высших кинематических пар. Масштаб схемы характеризуют масштабным коэффициентом длины Kl , который равен отношению длины AB l звена в метрах к длине отрезка АВ, изображающего это звено на схеме, в миллиметрах: Kl = l AB / AB

Кинематическая схема, по существу, есть модель, которой заменяют реальный механизм для решения задач его структурного и кинематического анализа. Отметим основные допущения, которые при этой схематизации подразумеваются:

а) звенья механизма абсолютно жесткие;

б) зазоры в кинематических парах отсутствуют


Кинематические цепи и их классификация.

Кинематические цепи по характеру относительного движения звеньев разделяются на плоские и пространственные. Кинематическая цепь называется плоской, если точки её звеньев описывают траектории, лежащие в параллельных плоскостях. Кинематическая цепь называется пространственной, если точки её звеньев описывают неплоские траектории или траектории, лежащие в пересекающихся плоскостях.

Классификация кинематических цепей:

Плоские – при закреплении одного звена, остальные звенья совершают плоское движение, параллельно некоторой неподвижной плоскости.

Пространственные – при закрепление одного звена, остальные звенья совершают движение в различных плоскостях.

Простые – в каждое звено входит не более, чем две кинематические пары.

Сложные – хотя бы одно звено имеет более двух кинематических пар.

Замкнутые – входит не более чем две кинематические пары, и эти звенья образуют один или несколько замкнутых контуров

Разомкнутые – звенья не образуют замкнутый контур.


Число степеней свободы кинематической цепи, подвижность механизма.

Число входных звеньев для превращения кинематической цепи в механизм должно равняться числу степеней свободы этой кинематической цепи.

Под числом степеней свободы кинематической цепи в данном случае подразумевается число степеней свободы подвижных звеньев относительно стойки (звена, принятого за неподвижное). Однако сама стойка в реальном пространстве может перемещаться.

Введем следующие обозначения:

k – число звеньев кинематической цепи

p1 – число кинематических пар первого класса в данной цепи

p2 – число пар второго класса

p3 – число пар третьего класса

p4 – число пар четвертого класса

p5 – число пар пятого класса.

Общее число степеней свободы k свободных звеньев, размещенных в пространстве, равно 6k. В кинематической цепи они соединяются в кинематические пары (т.е. на их относительное движение накладываются связи).

Кроме того, в качестве механизма используется кинематическая цепь, имеющая стойку (звено, принятое за неподвижное). Поэтому число степеней свободы кинематической цепи будет равно общему числу степеней свободы всех звеньев за вычетом связей, накладываемых на их относительное движение:

Число связей, накладываемых всеми парами I класса, равно их числу, т.к. каждая пара первого класса накладывает одну связь на относительное движение звеньев, соединенных в такую пару; число связей, накладываемых всеми парами II класса, равно их удвоенному количеству (каждая пара второго класса накладывает две связи) и т.д

У звена, принятого за неподвижное, отнимаются все шесть степеней свободы (на стойку накладывается шесть связей). Таким образом:

S1=p1, S2=2p2, S3=3p3, S4=4p4, S5=5p5, Sстойки=6,

а сумма всех связей

∑Si=p1+2p2+3p3+4p4+5p5+6.

В результате получается следующая формула для определения числа степеней свободы пространственной кинематической цепи:

W=6k–p1–2p2–3p3–4p4–5p5–6.

Сгруппировав первый и последний члены уравнения, получаем:

W=6(k–1)–p1–2p2–3p3–4p4–5p5,

или окончательно:

W=6n–p1–2p2–3p3–4p4–5p5,

Таким образом, число степеней свободы разомкнутой кинематической цепи равно сумме подвижностей (степеней свободы) кинематических пар, входящих в эту цепь. Кроме степеней свободы на качество работы манипуляторов и промышленных роботов большое влияние оказывает их маневренность.


Виды зубчатых механизмов, их строение и краткая характеристика.

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней, с большим числом зубьев колесом.

Термин «зубчатое колесо» является общим. Параметрам шестерни приписывают индекс 1, а параметрам колеса 2.

Основными преимуществами зубчатых передач являются:

Постоянство передаточного числа (отсутствие проскальзывания);

Компактность по сравнению с фрикционными и ременными передачами;

Высокий КПД (до 0,97…0,98 в одной ступени);

Большая долговечность и надежность в работе (например, для редукторов общего применения установлен ресурс 30000 ч);

Возможность применения в широком диапазоне скоростей (до 150 м/с), мощностей (до десятков тысяч кВт).

Недостатки:

Шум при высоких скоростях;

Невозможность бесступенчатого изменения передаточного числа;

Необходимость высокой точности изготовления и монтажа;

Незащищенность от перегрузок;

Наличие вибраций, которые возникают в результате неточного изготовления и неточной сборки передач.

Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.


Основной закон зацепления.

Для обеспечения постоянства передаточного

отношения: необходимо, чтобы профили сопряженных зубьев были очерчены такими кривыми, которые удовлетворяли бы требованиям основной теоремы зацепления

Основной закон зацепления: общая нормаль N-N к профилям, проведенная в точке C их касания, делит межосевое расстояние а w на части, обратно пропорциональные угловым скоростям. При постоянном передаточном отношении ( = const) и зафиксированных центрах О 1 и О 2 точка W будет занимать на линии центров неизменное положение. При этом проекции скорости  k 1 и  k 2 не равны. Их разность указывает на относительное скольжение профилей в направлении касательной К-К, что вызывает их износ. Равенство проекций скоростей и возможно только в одном положении, когда точка С контакта профилей совпадет с точкой W пересечения нормали N-N и линии центров О 1 О 2 . Точка W называется полюсом зацепления, а окружности с диаметрами d w1 и d w2 , которые касаются в полюсе зацепления и перекатываются друг по другу без скольжения, называются начальными.

Для обеспечения постоянства передаточного отношения теоретически один из профилей может быть выбран произвольно, но форма профиля сопряженного зуба должна быть строго определенной для выполнения условия (1.82). Наиболее технологичными в изготовлении и эксплуатации являются эвольвентные профили. Существуют и другие виды зацепления: циклоидальное, цевочное, зацепление Новикова, удовлетворяющие данному требованию.


Виды кинематических пар и их краткая характеристика.

Кинематическая пара, называется соединение двух соприкасающихся звеньев, допускающее их относительное движение.

Совокупность поверхностей, линий, точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом звена (элементом кинематической пары).

Кинематические пары (КП) классифицируются по следующим признакам:

по виду места контакта (места связи) поверхностей звеньев:

низшие, в которых контакт звеньев осуществляется по плоскости или поверхности (пары скольжения);

высшие, в которых контакт звеньев осуществляется по линиям или точкам (пары, допускающие скольжение с перекатыванием).

по относительному движению звеньев, образующих пару:

вращательные;

поступательные;

винтовые;

сферические.

по способу замыкания (обеспечения контакта звеньев пары):

силовое (за счет действия сил веса или силы упругости пружины);

геометрическое (за счет конструкции рабочих поверхностей пары).

Число условий связи S Число степеней свободы H Обозначение кинематической пары Класс кинематической пары Название пары Рисунок Условное обозначение
I Пяти- подвижная шар-плоскость
II Четырех-подвижная цилидр-плоскость
III Трех-подвижная плоскостная
III Трех-подвижная сферическая
IV Двух-подвижная сферическая с пальцем
IV Двух-подвижная цилиндрическая
V Одно-подвижная винтовая
V Одно-подвижная вращательная
V Одно-подвижная поступательная

Система звеньев, образующих между собой кинематические пары, называется кинематической цепью.

Механизмом называется такая кинематическая цепь, в которой при заданном движении одного или нескольких звеньев, обычно называемых входными или ведущими, относительно любого из них (например, стойки) все остальные совершают однозначно определяемые движения.

Механизм называется плоским, если все точки звеньев, образующих его, описывают траектории, лежащие в параллельных плоскостях.

Кинематическая схема механизма является графическим изображением механизма, выполненным в масштабе посредством условных обозначений звеньев и кинематических пар. Она дает полное представление о структуре механизма и размерах звеньев, необходимых для кинематического анализа.

Структурная схема механизма в отличие от кинематической схемы может быть выполнена без соблюдений масштаба и дает представление лишь о структуре механизма.

Числом степеней свободы механизма называется число не­зависимых координат, определяющих положение всех звеньев относительно стойки. Каждая из таких координат называется обобщенной. То есть число степеней свободы механизма рав­но числу обобщенных координат.

Для определения числа степеней свободы пространствен­ных механизмов применяется структурная формула Сомова-Малышева:

W = 6n - 5p 1 - 4p 2 - 3p 3 - 2p 4 - 1p 5 , (1.1)

где: W - число степеней свободы механизма;

n - число подвижных звеньев;

р 1 , р 2 , р 3 , р 4 , р 5 - соответственно число одно-, двух-, трех-, четырех и

пятиподвижных кинематических пар;

6 - число степеней свободы отдельно взятого тела в про­странстве;

5, 4, 3, 2, 1 - число условий связи, накладываемое соот­ветственно

на одно-, двух-, трех-, четырех и пятиподвижные пары.

Для определения числа степеней свободы плоского меха­низма используется структурная формула Чебышева:

W = 3n - 2p 1 , - 1p 2 , (1.2)

где: W - число степеней свободы плоского механизма;

n - число подвижных звеньев;

р 1 - число одноподвижных кинематических пар, являю­щихся в

плоскости низшими кинематическими парами;

р 2 - число двуподвижных кинематических пар, которые в плоскости

являются высшими;

3 - число степеней свободы тела на плоскости;

2 - число связей, накладываемое на низшую кинематиче­скую

1- число связей, накладываемое на высшую кинематиче­скую пару.

По степени подвижности определяют количество входных звеньев механизма. При получении при расчёте степени подвижности, равной 0 или больше 1, необходимо проверить наличие у механизма пассивных связей или лишних степеней свободы.

Формулы Сомова-Малышева и Чебышева называются структурными, так как они связывают число степеней свободы механизма с числом его звеньев и числом и видом кинема­тических пар.

При выводе этих формул предполагалось, что все нало­женные связи независимы, т.е. ни одна из них не может быть получена как следствие других. В некоторых механизмах это условие не выполняется, т.е. в общее число наложенных свя­зей может войти некоторое число q избыточных (повторных, пассивных) связей, которые дублируют другие связи, не изме­няя подвижности механизма, а только обращая его в статиче­ски неопределимую систему. В этом случае при использова­нии формул Сомова-Малышева и Чебышева эти повторные связи надо вычитать из числа наложенных связей:

W = 6n - (5р 1 + 4р 2 + Зр 3 + 2р 4 + р 5 - q),

W = 3n - (2p 1 + p 2 - q),

откуда q = W - 6n + 5p 1 + 4р 2 + Зр 3 + 2р 4 + p 5 ,

или q = W - 3n +2p 1 + р 2 .

В общем случае в последних уравнениях два неизвест­ных (W и q) и их нахождение представляет собой трудную задачу.

Однако в некоторых случаях W может быть найдено из геометрических соображений, что позволяет определить и q, воспользовавшись последними уравнениями.


Рис. 1.1 а) Кривошипно-ползунный механизм с избыточными



связями (когда оси шарниров непараллельны).

б) тот же механизм без избыточных связей (заменены

кинематические пары В и С).

и механизм превращается в пространственный. В этом случае формула Сомова-Малышева дает следующий результат:

W = 6n - 5p 1 , = 6·3-5·4=-2,

т.е. получается не механизм, а ферма, статически неопредели­ма. Число избыточных связей составит (т. к. в реальности W=l):q=l-(-2) = 3.

Избыточные связи в большинстве случаев следует устра­нять, изменяя подвижность кинематических пар.

Например, для рассматриваемого механизма (рис. 1.1, б), заменяя шарнир В двуподвижной кинематической парой (р 2 = 1), а шарнир С - трехподвижной (р 3 = 1), получим:

q = 1 - 6 ·3 + 5 ·2 + 4 ·1 + 3 ·1 = 0,

т.е. избыточных связей нет, и механизм статически определим.

Иногда избыточные связи умышленно вводят в состав меха­низма, например, для повышения его жесткости. Работоспособ­ность таких механизмов обеспечивается при выполнении опре­деленных геометрических соотношений. В качестве примера рассмотрим механизм шарнирного параллелограмма (рис. 1.2, а), у которого АВ//CD, ВС//AD; n = 3, p 1 = 4, W = 1 и q = 0.



Рис. 1.2. Шарнирный параллелограмм:

а) без пассивных связей,

б) с пассивными связями

Для повышения жесткости механизма (рис. 1.2, б) вводят дополнительное звено EF, причем при EF//ВС не вносится но­вых геометрических связей, движение механизма не изменяется и в реальности по-прежнему W = 1, хотя по формуле Чебышева имеем: W = 3 · 4 – 2 · 6 = 0, т.е. формально механизм получается статически неопределимым. Однако, если EF не параллельно ВС, движение станет невозможным, т.е. W действительно равно 0.

В соответствии с идеями Л.В. Ассура любой механизм образуется путем последовательного присоединения к механической системе с определенным движением (входным звеньям и стойке) кинематических цепей, удовлетворяющих условию, что степень их подвижности равна 0. Такие цепи, включающие только низшие кинематические пары 5-го класса, называютсягруппами Ассура .

Группа Ассура не может быть разложена на более мелкие группы, обладающие нулевой степенью подвижности.

Группы Ассура подразделяются на классы в зависимости от их строения.

Входное звено, образующее со стойкой низшую кинематическую пару, носит название механизма первого класса (рис 1.3). Степень подвижности этого механизма равна 1.

Рис 1.3. Механизмы первого класса

Степень подвижности группы Ассура равна 0

Из этого условия можно определить соотношение между числом низших кинематических пар пятого класса и числом звеньев, входящих в группу Ассура.

Отсюда очевидно, что число звеньев в группе должно быть четным, а число пар пятого класса является всегда кратным 3.

Группы Ассура подразделяются на классы и порядки. При сочетании n=2 и p 5 =3 образуются группы Ассура второго класса.

Кроме того, группы делятся на порядки. Порядок группы Ассура определяется числом элементов (внешних кинематических пар), которыми группа присоединяется к механизму.

Существуют 5 видов групп Ассура второго класса (табл.1.3).

Класс группы Ассура выше второго определяется числом внутренних кинематических пар, образующих наиболее сложный замкнутый контур.

При сочетании п=4 p 5 =6 образуются группы Ассура третьего и четвёртого классов (табл. 1.3). По видам эти группы не различаются.

Общий класс механизма определяется наивысшим классом групп Ассура, входящих в данный механизм.

Формула строения механизма показывает порядок присоединения групп Ассура к механизму первого класса.

Например, если формула строения механизма имеет вид

1 (1) 2 (2,3) 3 (4,5,6,7) ,

то это означает, что к механизму первого класса (звено 1 со стойкой) присоединены группа Ассура второго класса, включающая звенья 2 и 3 , и группа Ассура третьего класса, включающая звенья 4, 5, 6, 7. Наивысшим классом группы, входящей в состав механизма, является третий класс. Следовательно, имеем механизм третьего класса.


      Всякая кинематическая пара ограничивает движение соединяемых звеньев.

Ограничение, наложенное на движение твёрдого тела, называется условием связи .

      Таким образом, кинематическая пара накладывает условия связи на относительное движение двух соединяемых звеньев . Очевидно, что наибольшее число условий связи наложенное кинематической парой, равно пяти.

      Различное число условий связи, накладываемых на относительное движение звеньев кинематическими парами, позволяет разделить последние на 5 классов , так что пара k-го класса накладывает k условий связи, где k из {1,2,3,4,5}. Отсюда следует, что кинематическая пара k-го класса допускает в относительном движении звеньев 6-k степеней подвижности.

      Следует заметить, что в механизмах применяются кинематические пары только пятого, четвертого и третьего классов. Кинематические же пары первого и второго классов не нашли применения в существующих механизмах.

      Так как звенья соприкасаются геометрическими элементами, то, очевидно, кинематическая пара представляет собою совокупность таких элементов соединяемых звеньев. Отсюда следует, что характер относительного движения соединяемых звеньев зависит от формы геометрических элементов . Это относительное движение одного звена по отношению к другому может быть получено, если одно из двух соединяемых звеньев сделать неподвижным, а другому сообщить движение, допускаемое связями, накладываемыми кинематической парой.

      Любая точка подвижного звена описывает в относительном движении траекторию, которую для краткости будем называть траекторией относительного движения . Если траектории относительного движения таких точек являются плоскими кривыми и располагаются в параллельных плоскостях, то пара называется плоской . В случае пространственных кинематических пар указанные траектории относительного движения представляют собою пространственные кривые.

      Кроме разделения по классам, кинематические пары так же делят в зависимости от типа геометрического элемента пары:

  • высшие пары – это пары, в которых при соединении двух звеньев контакт осуществляется лишь на кривых или точках;
  • низшие пары – это пары, в которых при соединении двух звеньев контакт осуществляется по поверхностям.

      Высшие кинематические пары применяются для уменьшения трения в элементах этих пар и часто реализуются в качестве роликов или подшипников. Но особенности внутреннего строения таких элементов, в общем случае, не влияют на относительное движение соединяемых парой звеньев. Существуют так же определённые приёмы, позволяющие заменять механизмы с высшими кинематическими парами их аналогами с низшими парами (что позволяет упростить исследование кинематики механизма в дальнейшем). Поэтому далее мы будем рассматривать только механизмы с низшими парами.

      Низшие кинематические пары наиболее часто применяются на практике и имеют более простое внутреннее строение, по сравнению с высшими парами. Элемент низшей кинематической пары представляет собой две скользящие друг по другу поверхности, что, с одной стороны распределяет нагрузку в этом элементе, а с другой стороны увеличивает трение при относительном движении звеньев. В связи с этим, использование низших кинематических пар позволяет передавать значительную нагрузку от одного звена на другое, благодаря именно тому, что в этих парах звенья соприкасаются по поверхности.

Таблица 1 : Классификация кинематических пар по числу степеней свободы и числу связей
Число степеней свободы Число связей (класс пары) Название пары Рисунок Условное обозначение
1 5 Вращательная
1 5 Поступательная
1 5 Винтовая
2 4 Цилиндрическая
2 4 Сферическая с пальцем
3 3 Сферическая
3 3 Плоская
4 2 Цилиндр-плоскость
5 1 Шар-плоскость

Кинематическая пара – это подвижное соединение двух соприкасаю- щихся звеньев, допускающее относительные движения

    по относительному движению звеньев:

вращательные; поступательные; винтовые; плоскостные; сферические;

    по виду контакта звеньев:

низшие – это кинематические пары, в которых контакт звеньев, их образующих, осуществляется по плоскости или по поверхности;

высшие – это кинематические пары, в которых контакт звеньев, их образующих, осуществляется по линии или в точке;

    по способу обеспечения контакта звеньев, образующих кинематиче- ские пары: силовые – это кинематические пары, в которых постоянство контакта звеньев обеспечивается за счет действия сил тяжести или силы упругости пружины;геометрические – это кинематические пары, в которых постоянство контакта звеньев реализуется за счет конструкции рабочих поверхностей звеньев;

    по числу условий связи, накладываемых на относительное движение звеньев, образующих кинематическую пару (число условий связи определяет класс кинематической пары);

    по числу подвижностей в относительном движении звеньев (число подвижностей определяет подвижность кинематической пары).

Связи – это ограничения, наложенные на движения звеньев механизма, делающие их несвободными и предназначенные для передачи энергии или информации между этими звеньями.

Для образования кинематической пары необходимо наличие как мини- мум одной связи, ибо в случае равенства числа связей нулю звенья не взаи- модействуют, т. е. не соприкасаются, следовательно, кинематическая пара не существует

6.Кинематические цепи. Виды кинематических цепей

Все механизмы состоят из совокупности звеньев, образующих кинема- тические пары, которые составляют кинематические цепи.

Кинематическая цепь – это система звеньев, образующих между собой кинематические пары

Кинематические цепи подразделяются:

    по конструктивному исполнению:

простая – это кинематическая цепь, каждое звено которой входит в состав не более двух кинематических пар, т. е. содержит только одно- или двухвершинные звенья.

сложная – это кинематическая цепь, имеющая звенья, входящие в состав трех и более кинематических пар, т. е. содержит хотя бы одно звено с тремя или более вершинами

    по взаимодействию звеньев:

незамкнутая, или разомкнутая – это кинематическая цепь, в которой хотя бы одно звено имеет свободный элемент, не взаимодействующий с други- ми звеньями и не образующий с ними кинематических пар.

замкнутая – это кинематическая цепь, каждое звено которой входит в состав как минимум двух кинематических пар

Кинематическое соединение – это кинематическая пара, образованная звеньями нескольких кинематических цепей.

В зависимости от сложности структуры в механизме может присутст- вовать несколько кинематических соединений.

Характер относительного движения звеньев, допускаемого ки­нематической парой, зависит от формы звеньев в местахих кон­такта.

Совокупность возможных мест контакта образует на каждом из двух звеньев элемент кинематической пары. Элементом кинематической пары может быть точка , линия , поверхность.

Кинематические пары, элемент которых точка или линия , назы­ваютсявысшими ; кинематические пары, элемент которых поверхность , называются низшими .

В зависимости от геометрии одного (или обоих) из соприкасающихся звеньев различаюткинематические пары сферические, конические, цилиндрические, плоскостные, винтовые.

По характеру допускаемого кинематической парой относительного движения звеньев различают вращательные (В), поступательные (П), вращательно-поступательные (В + П) и с винтовым движением ВП. Различие пар типа В + П и ВПзаключается в том, что в первых относительные движения (вращательное и поступательное) независимы, а во вторых одно движение не может быть осуществлено без другого.

Наряду с парами звеньев, соприкасающихся по одной поверхности, линии или точке, в практике применяют пары с многократным соприкосновением. Это или повторение элементов взаимодей­ствия (шлицевые, многозаходные винтовые, зубчатые пары), или использование одновременного соприкосновения по по­верхности и линии (сферическая пара со штифтом), по цилиндрической и плоской поверхностям (пара со скользящей шпон­кой). Повторение соприкосновений звеньев характеризует эквивалентность пар различных видов. Пара с трехточечным контактом может быть эквивалентна плоскостной или сферической низшей паре по характеру движения звеньев.

Для твердого тела, свободно движущегося в пространстве, число степеней свободы (число независимых между собой возможных перемещений механической сис­темы) равно шести: три поступательных вдоль осей Х, Y, Z и три вращательных вокруг этих осей (рис.2.1).

Для звеньев, входящих в кинема­тическую пару, число степеней свободы всегда меньше шести, так как условия соприкосновения (свя­зей) уменьшают число возможных перемещений одного звена относительно другого: одно звено не может внедряться в другое и не может от него удаляться.

В общем случае каждая кинематическая пара накладывает на относительное движение звеньев S связей, допуская Н=6 – S относительных движений звеньев. В зависимости от числа наложенных связей S (оставшихся степеней свободы H) различают 5 классов кинематических пар. Такая классификация кинематических пар предложена И.И.Артоболевским (таблица 2.1)

В таблицах 2.2-2.4 приведены примеры конструктивного выполнения кинематических пар. Приведенные в табл.2.2 и 2.4 пары классифицированы исходя из предположения, что трение и деформация звеньев отсутствуют. Трение позволяет использо­вать отдельные пары во фрикционных передачах. С учетом деформации пары с точечным контактом могут превращаться в пары с поверхностным сопри­косновением.


Таблица 2.1

Виды кинематических пар



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования