Принцип работы реактора рбмк. Реактор большой мощности канальный. Ввод в эксплуатацию

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Необходимо для понимания дальнейшего коротко рассказать, что такое атомный реактор вообще и реактор РБМК в частности.

Атомный реактор электростанций – это аппарат для преобразования ядерной энергии в тепловую. Топливом в подавляющем большинстве реакторов служит слабообогащенный уран. В природе химический элемент уран состоит из двух его изотопов: 0,7 % изотоп с атомным весом 235, остальное – изотоп с атомным весом 238. Топливом является только изотоп урана-235. При захвате (поглощении) нейтрона ядром урана-235 оно становиться неустойчивым и по житейским меркам мгновенно распадается на две, в основном неравные, части с выделением большого количества энергии. В каждом акте деления ядра энергии выделяется в миллионы раз больше, чем при сгорании молекулы нефти или газа. В таком большом реакторе, как Чернобыльский, при работе на полной мощности «сгорает» около четырех килограммов урана за сутки.

Выделяемая при каждом делении ядра урана энергия реализуется следующим образом: основная часть – в виде кинетической энергии «осколков» деления, которые в процессе торможения передают её практически всю в твэле реактора и в его конструктивной оболочке. Выход за оболочку сколько-нибудь заметной части осколков недопустим. Если посмотрим на таблицу Менделеева, то увидим, что ядра осколков деления имеют явный избыток нейтронов для того, чтобы быть стабильными. Поэтому в результате цепочк радиационного загрязнения территории при аварии после разрушения и выброса при взрыве твэлов.

После прекращения цепной реакции, при остановке реактора, остаточные тепловыделения от распада продуктов деления ещё длительное время вынуждают охлаждать твэлы.

При каждом делении ядра урана испускается два-три, в среднем около двух с половиной, нейтрона. Их кинетическая энергия поглощается замедлителем, топливом и конструктивными элементами реактора, затем передаётся теплоносителю.

Как раз нейтроны-то и делают возможным осуществлять цепную реакцию деления ядер урана-235. Если один нейтрон от каждого деления вызовет новое деление, то интенсивность реакции сохранится на одном уровне.

Большая часть нейтронов испускается немедленно при делении ядра. Это мгновенные нейтроны. Малая часть, около 0,7 %, через небольшой промежуток времени, через секунды и десятки секунд, – запаздывающие нейтроны. Они позволяют управлять интенсивностью реакции деления урана и регулировать мощность реактора. В противном случае существование энергетических реакторов становилось бы проблематичным – только атоне видим.

Обычно в энергетических реакторах используют не природный, а несколько обогащённый изотопом-235 уран. Но всё-таки большая часть – это уран-238 и потому значительное ккже способный делиться при поглощении тепловых нейтронов, как и уран-235. Свойства плутония как топлива отличаются от урана и при достаточном его накоплении после длительной работы реактора несколько изменяют физику реактора. Выброшенный при аварии плутоний также вносит свою лепту в загрязнение территории. Причём надежды на его распад нет никакой (период полураспада плутония-239 более 24 тыс. лет), только миграция вглубь земли. Присутствуют и другие изотопы плутония. Свойства урана-235:

– делиться при поглощении его ядром теплового (с малой энергией) нейтрона;

– выделять при этом большое количество энергии;

– испускать при делении нейтроны, необходимые для самоподдерживающейся реакции.

Уран-235 является основой создания атомных энергетических реакторов.

Почти все реакторы АЭС работают на тепловых нейтронах, т.е. нейтронах с малой кинетической энергией. Нейтроны после деления урана или плутония претерпевают стадии замедления, диффузии и захвата ядрами топлива и конструктивных материалов. Часть нейтронов вылетает за пределы активной зоны – утечка. Одновременно происходит большое количество делений, и, следовательно, в работающем реакторе всегда в наличии большое количество нейтронов, составляющих нейтронный поток, нейтронное поле. Выгорание ядер топлива происходит медленно, и поэтому в достаточно длительный промежуток времени количество топлива в реакторе можно считать неизменным. Тогда число поглощённых топливом нейтронов, а при этом и число разделившихся ядер и количество получаемой энергии, будет прямо пропорционально нейтронному потоку в активной зоне. Фактически задача операторов сводится к измерению и поддержанию нейтронного потока согласно требованиям по поддержанию мощности.

Если условно разбить нейтроны деления на последовательные поколения (условность в следующем – поскольку деление происходит несогласованно, то это аналогично движению неорганизованной толпы, а не шагам армейской колонны) с количеством нейтронов № 1, № 2 и так далее, то при равенстве числа нейтронов каждого поколения мощность реактора будет постоянной, такой реактор будет называться критичным и коэффициент размножения нейтронов, равный отношению числа нейтронов последующего поколения к предыдущему, равен единице. При коэффициенте размножения больше единицы число нейтронов и мощность непрерывно возрастают – реактор надкритичный. Чем больше коэффициент размножения, тем больше скорость нарастания мощности, причём мощность нарастает со временем не линейно, а по экспоненте. В оперативной работе пользуютсяой точностью представляется равной (К-1). В обычной практике оператор имеет дело с реактором, надкритичность или положительная реактивность которого составляет не более одной десятой процента. При большей реактивности скорость нарастания мощности становится слишком большой, опасной для целостности реактора и обслуживающих систем. Все энергетические реакторы имеют автоматическую АЗ, глушащую реактор при большой скорости увеличения мощности. На реакторе РБМК АЗ срабатывала при скорости возрастания мощности в два раза за время 20 с.

Важнейший момент. При делении ядра урана примерно 0,7 % нейтронов рождаются не при делении, а с некоторым запаздыванием. Они входят в общее число нейтронов данного поколения и тем самым увеличивают время жизни поколения нейтронов. Доля запаздывающих нейтронов обычно обозначается р. Если избыточная (положительная) реактивность достигает (и больше) величины р, то реактор становится критичным только на мгновенных нейтронах, скорость сменяемости поколений которых велика – определяется временем замедления и диффузии нейтронов, и поэтому скорость увеличения мощности очень большая. Защиты в этом случае нет – только разрушение реактора может прервать цепную реакцию. Так было 26 апреля 1986 г. на четвёртом блоке Чернобыльской АЭС. Фактически из-за наработки в активной зоне плутония и различия в свойствах мгновенных и запаздывающих нейтронов в реакторе

Реактор РБМК-1000 – это реактор канального типа, замедлитель нейтронов – графит, теплоноситель – обычная вода. Топливная кассета набирается из 36 твэлов по три с половиной метра длиной. Твэлы с помощью дистанционирующих решёток, закреплённых на центральном несущем стержне, размещаются на двух окружностях: на внутренней 6 штук и на внешней 12 штук.

Каждая кассета состоит из двух ярусов по высоте. Таким образом, активная зона имеет высоту семь метров. Каждый твэл набирается из таблеток UO 2 размещённых в герметичной трубе из сплава циркония с ниобием. В отличие от корпусных реакторов, где все топливные кассеты располагаются в общем корпусе, рассчитанном на полное рабочее давление, в реакторе РБМК каждая кассета размещена в отдельном технологическом канале, представляющем собой трубу диаметром 80 мм.

Активная зона реактора РБМК высотой 7 и диаметром 11,8 м набрана из 1 888 графитовых колонн с центральными отверстиями каждая, куда установлены каналы. Из этого числа 1 661 – технологические каналы с топливными кассетами, остальные – каналы СУЗ, где размещены 211 поглощающих нейтроны стержней и 16 датчиков контроля. Каналы СУЗ равномерно распределены по активной зоне в радиальном и азимутальном направлениях.

Снизу к технологическим каналам подводится теплоноситель – обычная вода под высоким давлением, охлаждающая твэлы. Вода частично испаряется и в виде пароводяной смеси сверху отводится в барабан-сепараторы, где пар отделяется и поступает на турбины. Вода из барабан-сепараторов при помощи ГЦН вновь подаётся на вход в технологические каналы. Пар после отработки в турбинах конденсируется и возвращается в контур теплоносителя. Таким образом, замыкается контур циркуляции воды.

Если принять конструкцию активной зоны заданной, посмотрим куда деваются нейтроны деления. Часть нейтронов уходит за пределы активной зоны и теряется безвозвратно. Часть нейтронов поглощается замедлителем, теплоносителем, конструкционными материалами и продуктами деления топливных ядер. Это бесполезная утрата нейтронов. Остальные поглощаются топливом. Для поддержания постоянной мощности количество поглощаемых топливом нейтронов также должно быть неизменным. Следовательно, из испускаемых при каждом делении топливного ядра двух с половиной (в среднем) нейтронов на утечку и захват неделящимися материалами мы можем терять полтора нейтрона. Это будет критичный реактор.

Такой реактор работать не может, хотя бы по следующей причине: при делении урана образуются ядра различных химических элементов и среди них в значительном количестве ксенон с атомным весом 135, обладающий очень большим сечением поглощения нейтронов. При подъёме мощности начинает образовываться ксенон, и реактор заглохнет. Так и было с первым американским реактором. Э. Ферми посчитал сечение захвата нейтронов ядром ксенона и в шутку сказал, что ядро получается величиной с апельсин.

Для компенсации этого и других эффектов топливо в реактор загружают с избытком, что при постоянной утечке нейтронов и поглощении их неделящимися материалами увеличивает долю поглощения топливом. Чтобы не происходило постоянного наращивания мощности такого реактора, в активную зону вводят так называемые органы воздействия на реактивность, содержащие материалы, интенсивно поглощающие нейтроны. Методы компенсации могут быть различные, мы рассмотрим их только на примере РБМК.

В каналах СУЗ размещаются стержни, содержащие сильный поглотитель нейтронов – бор, с помощью которого и поддерживается нужный баланс нейтронов и, следовательно, мощность реактора. При необходимости увеличения мощности часть стержней выводится полностью или частично из активной зоны, в результате чего увеличивается доля нейтронов, поглощаемых топливом, мощность возрастает и стержни по достижении нужного уровня мощности вновь вводятся в активную зону. Как правило, новое положение стержней управления не идентично исходному – это зависит от изменения реактивности активной зоны при изменении мощности – от мощностного коэффициента реактивности. При необходимости уменьшения мощности в активную зону вводят стержни, т.е. вводят отрицательную реактивность, реактор становится подкритичным и мощность начинает уменьшаться. На новом уровне мощность стабилизируется изменением положения стержней. Всё это осуществляется АР. Оператор нажатием кнопки изменяет уровень заданной мощности, а остальное – дело регулятора. Правда, в случае с реактором РБМК это не совсем так, а иногда и совсем не так, – оператор вынужден своим вмешательством корректировать работу регулятора в основном по установлению энерговыделения в той или иной части зоны.

Во вновь построенном реакторе технологические каналы загружаются свежими невыгоревшими топливными кассетами. Если все 1 661 канал загрузить кассетами, то коэффициент размножения будет столь велик, что погасить его имеющимися стержнями управления будет невозможно. Поэтому около 240 технологических каналов вместо топливных кассет загружаются специальными стержнями-поглотителями нейтронов. И ещё несколько сотен поглотителей размещаются в отверстиях центральных несущих стержней топливных кассет. По мере выгорания топлива эти поглотители постепенно извлекаются и заменяются топливными кассетами. При извлечении всех поглотителей поддержание нужной реактивности активной зоны осуществляется заменой наиболее выгоревших кассет свежими. Наступает режим стационарных перегрузок.

В реакторе РБМК топливные кассеты заменяются при работе реактора на мощности специальной разгрузочно-загрузочной машиной. В это время активная зона содержит полностью выгоревшие кассеты, свежие и с промежуточным выгоранием. Вот на этот режим и рассчитано количество стержней управления и защиты.

Каждый стержень СУЗ вносит какую-то реактивность, что зависит от его местоположения в зоне и формы нейтронного поля. В реакторе РБМК реактивность принято измерять в стержнях, эффективность одного стержня условно принята 0,05 %. Как уже пояснялось, скорость увеличения мощности реактора тем больше, чем больше его положительная реактивность. Скорость уменьшения мощности также больше при большей внесённой отрицательной реактивности.

В результате нарушений режима и неисправностей в системах возникает необходимость во избежание повреждений быстро заглушить реактор. Поэтому количество стержней СУЗ всегда должно быть с избытком для приведения реактора в состояние с нужной подкритичностью. Когда реактор находится в критическом состоянии (критическое значит не катастрофическое, а что его коэффициент размножения равен единице и, соответственно, реактивность равна нулю), обязательно должно быть не менее какого-то количества стержней выведено из активной зоны и готово к немедленному вводу в зону для прекращения цепной реакции деления. И чем больше стержней выведено из активной зоны, тем больше уверенности, что реактор при необходимости будет заглушён быстро, с большой подкритичностью. Это верно для всех реакторов, спроектированных согласно требованиям норм и правил безопасности.

Во всех реакторах тем или иным путём часть органов воздействия на реактивность введена в реактор – это необходимо для маневрирования мощностью. К примеру, при вынужденном частичном снижении мощности временно увеличивается количество ксенона (говорят, что реактор отравлен ксеноном), увеличение количества поглотителя нейтронов нужно скомпенсировать выводом из зоны части оперативно извлекаемого поглотителя. Иначе реактор придётся заглушить и ждать распада ксенона.

В реакторе РБМК при работе часть стержней СУЗ находится частично или полностью в активной зоне и подавляет (компенсирует) какую-то избыточную реактивность. Теперь определимся с понятием ОЗР.

Оперативный запас реактивности – это положительная реактивность, которую реактор имел бы при всех извлечённых стержнях СУЗ.

Как и нормальным реакторам, реактору РБМК запас реактивности также необходим для манёвра мощностью. Ещё после аварии в 1975 г. на первом блоке Ленинградской АЭС для РБМК был определён минимальный запас реактивности в 15 стержней исходя из необходимости регулирования энерговыделения в активной зоне. А после чернобыльской аварии была найдена совершённая дикость, абсурд – при малом запасе АЗ не глушит, а разгоняет реактор. Чем меньше запас реактивности, тем более ядерноопасен РБМК?! Знай наших!.. Мы не как другие прочие.

Ещё реакторов с такими свойствами нет. Можно понять, что АЗ не справилась с глушением реактора, но чтобы сама разгоняла реактор – такого и в кошмарном сне не привидится.

Как и ОЗР, в тексте часто будут упоминаться паровой эффект реактивности и мощностной коэффициент реактивности. Уясним понятия.

Пусть реактор работает на какой-то мощности при неизменном расходе теплоносителя. В технологическом канале вода нагревается до кипения и появляется пар. По мере продвижения в канале всё больше воды, отбирающей тепло у твэлов, превращается в пар. Таким образом, в стационарном режиме имеем в пределах активной зоны какое-то количество пара. Теперь увеличим мощность реактора. Количество тепла возрастает и, следовательно, будет в активной зоне больше водяного пара. Каким образом это повлияет на реактивность активной зоны – в сторону уменьшения или увеличения – зависит от соотношения в зоне ядер замедлителя и топлива. Вода также является замедлителем нейтронов, как и графит, и с увеличением количества пара в активной зоне становится меньше воды. Проектанты, видимо, исходя из экономических соображений, выбрали соотношение ядер замедлителя и топлива в РБМК таким, чтобы полная замена воды паром вела к увеличению реактивности на пять-шесть р.

Чем это страшно? К примеру, при разрыве трубы теплоносителя диаметром 800 мм обезвоживание наступает через несколько секунд и тихоходная АЗ не справилась бы с выделившейся реактивностью. Взрыв, как и 26 апреля. Это не всё. При увеличении мощности температура топлива всегда возрастает и это ведёт к уменьшению реактивности. В реакторе РБМК при изменении мощности, в основном, два фактора влияют на реактивность: отрицательный температурный эффект топлива и положительный паровой эффект. Они и составляют быстрый мощностной коэффициент реактивности – изменение реактивности при изменении мощности на один мегаватт (или киловатт). Другие эффекты изменения реактивности в зависимости от мощности: температурный эффект графита и отравление реактора ксеноном, хотя и имеют существенную величину, проявляются с большим запаздыванием и на динамику не влияют. У правильно сконструированного реактора мощностной коэффициент должен быть отрицательным. Это означает, что при каком-либо возмущении возрастает реактивность, с ней начинает увеличиваться мощность, а это ведёт к уменьшению реактивности и мощность стабилизируется, хотя и на более высоком уровне. У реактора РБМК мощностной коэффициент был положительным в большом диапазоне мощностей – в нарушение требований нормативных документов. Это прямо повлияло на возникновение аварии 26 апреля.

1.Введение…………………………………………………………….4

2.Основные характеристики реактора РБМК–1000………………7

2.1 Тепловая схема с реактором РБМК– 1000……………………7

2.2 Внутриреакторные конструкции………………………………...12

2.3 Запорно-регулирующий клапан………………………………....18

2.4 Разгрузочно-загрузочная машина……………………………….21

2.5 Тепловыделяющие сборки (ТВС)…………………………….....25

2.6 Конструкция защиты от ионизирующего излучения ректора..28

3.Виды и назначение трубопроводов и их составных частей с рисунками и схемами, параметры работы и основные усилия, действующие на трубопроводы……………………………………………………………….32

4.Основные дефекты, возникающие в трубопроводах с анализом причин их возникновения, методы обнаружения дефектов………………………….48

5.Порядок вывода трубопроводов в ремонт с подготовкой рабочего места и отключения от тепловой схемы…………………………………………….53

6.Технология производства ремонта, промежуточный контроль……….57

7.Испытания трубопроводов………………………………………………..60

8.Ввод в эксплуатацию……………………………………………………….61

9.Заключение…………………………………………………………………..63

10.Список сокращений……………………………………………………….64

11.Список использованной литературы…………………………………….66

ВВЕДЕНИЕ

Реактор РБМК-1000 является реактором с неперегружаемыми каналами, в отличие от реакторов с перегружаемыми каналами, ТВС и технологический канал являются раздельными узлами. К установленным в реактор каналам с помощью неразъемных соединений подсоединены трубопроводы - индивидуальные тракты подвода и отвода теплоносителя. Загружаемые в каналы ТВС крепятся и уплотняются в верхней части стояка канала. Таким образом, при перегрузке топлива не требуется размыкания тракта теплоносителя, что позволяет осуществлять ее с помощью соответствующих перегрузочных устройств без остановок реактора.

При создании таких реакторов решалась задача экономичного использования нейтронов в активной зоне реактора. С этой целью оболочки ТВЭЛов и трубы канала изготовлены из слабо поглощающих нейтроны циркониевых сплавов. В период разработки РБМК температурный предел работы сплавов циркония был недостаточно высок. Это определило относительно невысокие параметры теплоносителя в РБМК. Давление в сепараторах равно 7,0 МПа, чему соответствует температура насыщенного пара 284° С. Схема установок РБМК одноконтурная. Пароводяная смесь после активной зоны попадает по индивидуальным трубам в барабаны-сепараторы, после которых насыщенный пар направляется в турбины, а отсепарированная циркуляционная вода после ее смешения с питательной водой, поступающей в барабаны-сепараторы от турбоустановок, с помощью циркуляционных насосов подается к каналам реактора. Разработка РБМК явилась значительным шагом в развитии атомной энергетики СССР, поскольку такие реакторы позволяют создать крупные АЭС большой мощности.

Из двух типов реакторов на тепловых нейтронах - корпусных водо-водяных и канальных водографитовых, использовавшихся в атомной энергетике Советского Союза, последние оказалось проще освоить и внедрить в жизнь. Это объясняется тем, что для изготовления канальных реакторов могут быть использованы общемашиностроительные заводы и не требуется такого уникального оборудования, которое необходимо для изготовления корпусов водо-водяных реакторов.

Эффективность канальных реакторов типа РБМК в значительной степени зависит от мощности, снимаемой с каждого канала. Распределение мощности между каналами зависит от плотности потока нейтронов в активной зоне и выгорания топлива в каналах. При этом существует предельная мощность, которую нельзя превышать ни в одном канале. Это значение мощности определяется условиями теплосъема.

Первоначально проект РБМК был разработан на электрическую мощность 1000 МВт, чему при выбранных параметрах соответствовала тепловая мощность реактора 3200 МВт. При имеющемся в реакторе количестве рабочих каналов (1693) и полученном коэффициенте неравномерности тепловыделения в активной зоне реактора максимальная мощность канала составляла около 3000 кВт. В результате экспериментальных и расчетных исследований было установлено, что при максимальном массовом паросодержании на выходе из каналов около 20 % и указанной мощности обеспечивается необходимый запас до кризиса теплосъема. Среднее паросодержание по реактору составляло 14,5%. Энергоблоки с реакторами РБМК электрической мощностью 1000 МВт (РБМК-1000) находятся в эксплуатации на Ленинградской, Курской, Чернобыльской АЭС, Смоленской АЭС. Они зарекомендовали себя как надежные и безопасные установки с высокими технико-экономическими показателями. Если их специально не взрывать.

Для повышения эффективности реакторов РБМК были изучены возможности увеличения предельной мощности каналов. В результате конструкторских разработок и экспериментальных исследований оказалось возможным путем интенсификации теплообмена увеличить предельно допустимую мощность канала в 1,5 раза до 4500 кВт при одновременном повышении допустимого паросодержания до нескольких десятков процентов. Необходимая интенсификация теплообмена достигнута благодаря разработке ТВС, в конструкции которой предусмотрены интенсификаторы теплообмена. При увеличении допустимой мощности канала до 4500 кВт тепловая мощность реактора РБМК повышена до 4800 МВт, чему соответствует электрическая мощность 1500 МВт. Такие реакторы РБМК-1500 работают на Игналинской АЭС. Увеличение мощности в 1,5 раза при относительно небольших изменениях конструкции с сохранением размеров реактора является примером технического решения, дающего большой эффект.


ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕАКТОРА РБМК-1000

Тепловая схема с реактором РБМК – 1000

ЧАСТЬ.

Виды и назначение трубопроводов и их составных частей с рисунками и схемами, параметры работы и основные усилия, действующие на трубопроводы.

Классификация трубопроводов

Трубопроводы в зависимости от класса опасности транспортируемого вещества (взрыво-пожароопасность и вредность) подразделяются на группы среды (А, Б, В) и в зависимости от расчетных параметров среды (давления и температуры) – на пять категорий (I, II, III, IV, V)

Категорию трубопровода следует устанавливать по параметру, требующему отнесения его к более ответственной категории.

Обозначение группы определенной транспортируемой среды включает в себя обозначение группы среды (А, Б, В) и подгруппы (а, б, в), отражающей токсичность и взрывопожароопасность веществ, входящих в эту среду.

Обозначение трубопровода в общем виде соответствует обозначению группы транспортируемой среды и его категории. Обозначение "трубопровод I группа А(б)" обозначает трубопровод, по которому транспортируется среда группы А (б) c параметрами категории I.

Группа среды трубопровода, транспортирующего среды, состоящие из различных компонентов, устанавливается по компоненту, требующему отнесения трубопровода к более ответственной группе. При этом если содержание одного из компонентов в смеси превышает среднюю смертельную концентрацию в воздухе согласно ГОСТ 12.1.007, то группу смеси следует определять по этому веществу. Если наиболее опасный по физико-химическим свойствам компонент входит в состав смеси в количестве ниже смертельной дозы, вопрос об отнесении трубопровода к менее ответственной группе или категории трубопровода решается проект- ной организацией (автором проекта).

Класс опасности веществ следует определять по ГОСТ 12.1.005 и ГОСТ 12.1.007 , значения показателей пожаровзрывоопасности веществ – по соответствующей НД или методикам, изложенным в ГОСТ 12.1.044.

Для вакуумных трубопроводов следует учитывать абсолютное рабочее давление.

Трубопроводы, транспортирующие вещества с рабочей температурой, равной или превышающей температуру их самовоспламенения, а также негорючие, трудногорючие и горючие вещества, которые при взаимодействии с водой или кислородом воздуха могут быть пожаровзрывоопасными, следует относить к I категории. По решению разработчика допускается в зависимости от условий эксплуатации принимать более ответственную (чем определяемую по расчетным параметрам среды) категорию трубопровода.

Требования к конструкции трубопроводов

Конструкция трубопровода должна предусматривать возможность выполнения всех видов контроля. Если конструкция трубопровода не позволяет проведение наружного и внутреннего осмотров или гидравлического испытания, автором проекта должна быть указана методика, периодичность и объем контроля, выполнение которых обеспечит своевременное выявление и устранение дефектов.

Ответвления (врезки)

Ответвление от трубопровода выполняется одним из способов. Не допускается усиление ответвлений с помощью ребер жесткости.

– Ответвления на технологических трубопроводах

Присоединение ответвлений по способу "а" применяется в тех случаях, когда ослабление основного трубопровода компенсируется имеющимися запасами прочности соединения. Допускаются также врезки в трубопровод по касательной к окружности по- перечного сечения трубы для исключения накопления продуктов в нижней части трубопровода.

Сваренные из труб тройники, штампосварные отводы, тройники и отводы из литых по электрошлаковой технологии заготовок допускается применять на давление до 35 МПа (350 кгс/см2). При этом все сварные швы и металл литых заготовок подлежат контролю УЗД в объеме 100 %.

Сварные крестовины и крестовые врезки допускается применять на трубопроводах из углеродистых сталей при рабочей температуре не выше 250 °С. Крестовины и крестовые врезки из электросварных труб допускается при- менять при номинальном давлении не более PN 16 (1,6 МПа). При этом крестовины должны быть изготовлены из труб с номинальным давлением не менее PN 25 (2,5 МПа). Крестовины и крестовые врезки из бесшовных труб допускается применять при номинальном давлении не более PN 24 (при условии изготовления крестовин из труб с номинальным давлением не менее PN 40. Врезку штуцеров в сварные швы трубопроводов следует производить с учетом пункта 11.2.7.

Отводы

Для трубопроводов применяются, как правило, крутоизогнутые отводы, изготовленные из бесшовных и сварных прямошовных труб методом горячей штамповки или протяжки, а также гнутые и штампосварные. При диаметре больше DN 6.4.2 400 выполняют подварку корня шва, сварные швы подвергают 100 % ультразвуковому или радиографическому контролю.

Гнутые отводы, изготовляемые из бесшовных труб, применяются в тех случаях, когда требуется максимально снизить гидравлическое сопротивление трубопровода, например, на трубопроводах с пульсирующим потоком среды (с целью снижения вибрации), а также на трубопроводах при номинальном диаметре до DN 25. Необходимость термообработки определяют по 12.2.11.

Пределы применения гнутых отводов из труб действующего сортамен- та должны соответствовать пределам применения труб, из которых они изготов- лены. Длина прямого участка от конца трубы до начала гнутого участка должна быть не менее 100 мм.

В трубопроводах допускается применять сварные секторные отводы номинальным диаметром DN 500 и менее при номинальном давлении не более PN 40 (4 МПа) и номинальным диаметром более DN 500 при номинальном давлении до PN 25 (2,5 МПа). При изготовлении секторных отводов угол между поперечными сечениями сектора не должен превышать 22,5°. Расстояние между соседними сварными швами по внутренней стороне отвода должно обеспечивать доступность контроля этих швов по всей длине шва. Для изготовления секторных отводов не допускается применение спиральношовных труб, при диаметре более 400 мм применяют подварку корня шва, сварные швы подвергают 100 % ультразвуковому или радиографическому контролю. Сварные секторные отводы не следует применять в случаях: - больших циклических нагрузок, например от давления, более 2000 циклов; - необеспеченности самокомпенсации за счет других трубных элементов.

Переходы

В трубопроводах следует применять, как правило, переходы штампованные, вальцованные из листа с одним сварным швом, штампосварные из поло- вин с двумя сварными швами. Пределы применений стальных переходов должны соответствовать пределам применения присоединяемых труб аналогичных марок сталей и аналогичных рабочих (расчетных) параметров.

Допускается применение лепестковых переходов для трубопроводов с номинальным давлением не более PN16 (1,6 МПа) и номинальным диаметром DN 500 и менее. Не допускается устанавливать лепестковые переходы на трубопроводах, предназначенных для транспортирования сжиженных газов и веществ группы А и Б.

Лепестковые переходы следует сваривать с последующим 100 %-ным контролем сварных швов ультразвуковым или радиографическим методом. После изготовления лепестковые переходы следует подвергать термообра- ботке.

Заглушки

Приварные плоские и ребристые заглушки из листовой стали рекомендуется применять для трубопроводов при номинальном давлении до PN 25 (2,5 МПа).

Заглушки, устанавливаемые между фланцами, не следует применять для разделения двух трубопроводов с различными средами, смешение которых недопустимо.

Пределы применения заглушек и их характеристики по материалу, давлению, температуре, коррозии и т.д. должны соответствовать пределам применения фланцев.

Требования к трубопроводной арматуре .

При проектировании и изготовлении трубопроводной арматуры необходимо выполнять требования технических регламентов, стандартов и требования заказчиков в соответствии с требованиями безопасности по ГОСТ Р 53672 .

В ТУ на конкретные виды и типы трубопроводной арматуры должны быть приведены:

Перечень нормативных документов, на основании которых производят проектирование, изготовление и эксплуатацию арматуры;

Основные технические данные и характеристики арматуры;

Показатели надежности и (или) показатели безопасности (для арматуры, у которой возможны критические отказы);

Требования к изготовлению;

Требования безопасности; - комплект поставки;

Правила приемки;

Методы испытаний;

Перечень возможных отказов и критерии предельных состояний;

Указания по эксплуатации;

Основные габаритные и присоединительные размеры, в том числе наружный и внутренний диаметры патрубков, разделки кромок патрубков под при- варку и др.

Основные показатели назначения арматуры (всех видов и типов), устанавливаемые в конструкторской и эксплуатационной документации:

Номинальное давление PN (рабочее или расчетное давление Р);

Номинальный диаметр DN;

Рабочая среда;

Расчетная температура (максимальная температура рабочей среды);

Допустимый перепад давлений;

Герметичность затвора (класс герметичности или величина утечки);

Строительная длина;

Климатическое исполнение (с параметрами окружающей среды);

Стойкость к внешним воздействиям (сейсмические, вибрационные и др.);

Дополнительные показатели назначения для конкретных видов арматуры:

Коэффициент сопротивления (ζ) для запорной и обратной арматуры;

Зависимость коэффициента сопротивления от скоростного давления – для обратной арматуры;

Коэффициент расхода (по жидкости и по газу), площадь седла, давление настройки, давление полного открытия, давление закрытия, противодавление, диапазон давлений настройки - для предохранительной арматуры;

Условная пропускная способность (Кvy), вид пропускной характеристики, кавитационные характеристики – для регулирующей арматуры;

Условная пропускная способность, величина регулируемого давления, диапазон регулируемых давлений, точность поддержания давления (зона нечувствительности и зона неравномерности), минимальный перепад давления, при ко- тором обеспечивается работоспособность – для регуляторов давления;

Параметры приводов и исполнительных механизмов;

А) для электропривода – напряжение, частота тока, мощность, режим ра- боты, передаточное число, КПД, максимальный крутящий момент, параметры ок- ружающей среды;

Б) для гидро – и пневмопривода – управляющая среда, давление управ- ляющей среды – для регуляторов давления;

Время открытия (закрытия) – по требованию заказчика арматуры.

Арматура должна быть испытана в соответствии с ГОСТ Р 53402 и ТУ, при этом обязательный объем испытаний должен включать:

На прочность и плотность основных деталей и сварных соединений, работающих под давлением;

На герметичность затвора, нормы герметичности затвора – по ГОСТ Р 54808 (для арматуры рабочих средств групп А, Б(а) и Б(б) при испытании на герметичность затворов не должно быть видимых утечек – класс А ГОСТ Р 54808);

На герметичность относительно внешней среды;

На функционирование (работоспособность). Результаты испытаний должны быть отражены в паспорте арматуры.

Применение запорной арматуры в качестве регулирующей (дроссели- рующей) не допускается.

При установке привода на арматуру маховики для ручного управления должны открывать арматуру движением против часовой стрелки, а закрывать – по часовой стрелке. Направление осей штока привода должно определяться в проектной документации.

Запорная арматура должна иметь указатели положения запирающего элемента ("открыто", "закрыто).

Материал арматуры для трубопроводов следует выбирать в зависимости от условий эксплуатации, параметров и физико-химических свойств транспортируемой среды и требований НД. Арматуру из цветных металлов и их сплавов допускается применять в тех случаях, когда стальная и чугунная арматура не может быть использована по обоснованным причинам. Арматуру из углеродистых и легированных сталей допускается применять для сред со скоростью коррозии не более 0,5 мм/год.

Арматуру из ковкого чугуна марки не ниже КЧ 30-6 и из серого чугуна марки не ниже СЧ 18-36 следует применять для трубопроводов, транспортирующих среды группы.

Для сред групп А(б), Б(а), кроме сжиженных газов; Б(б), кроме ЛВЖ с температурой кипения ниже 45°С; Б(в) – арматуру из ковкого чугуна допускается использовать, если пределы рабочих температур среды не ниже минус 30 °С и не выше 150 °С при давлении среды не более 1,6 МПа (160 кгс/см2). При этом для номинальных рабочих давлений среды до 1 МПа применяется арматура, рассчитанная на давление не менее PN 16 (1,6 МПа), а для номинальных давлений более PN 10 (1 МПа) - арматура, рассчитанная на давление не менее PN 25 (2,5 МПа). 8.13 Не допускается применять арматуру из ковкого чугуна на трубопроводах, транспортирующих среды группы А(а), сжиженных газов группы Б(а);

ЛВЖ с температурой кипения ниже 45 °С группы Б(б). Не допускается применять арматуру из серого чугуна на трубопроводах, транспортирующих вещества групп А и Б, а также на паропроводах и трубопроводах горячей воды, используемых в качестве спутников.

Арматуру из серого и ковкого чугуна не допускается применять независимо от среды, рабочего давления и температуры в следующих случаях: - на трубопроводах, подверженных вибрации;

На трубопроводах, работающих при резкопеременном температурном режиме среды;

При возможности значительного охлаждения арматуры в результате дроссельэффекта;

На трубопроводах, транспортирующих вещества групп А и Б, содержа- щих воду или другие замерзающие жидкости, при температуре стенки трубопровода ниже 0 °С независимо от давления;

В обвязке насосных агрегатов при установке насосов на открытых площадках;

В обвязке резервуаров и емкостей для хранения взрывопожароопасных и токсичных веществ.

На трубопроводах, работающих при температуре среды ниже 40 °С, следует применять арматуру из соответствующих легированных сталей, специальных сплавов или цветных металлов, имеющих при наименьшей возможной температуре корпуса ударную вязкость металла (KCV) не ниже 20 Дж/см2. Для жидкого и газообразного аммиака допускается применение специальной арматуры из ковкого чугуна в пределах параметров и условий.

гидроприводе арматуры следует применять негорючие и незамерзающие жидкости, соответствующие условиям эксплуатации.

С целью исключения возможности выпадения в пневмоприводах конденсата в зимнее время газ осушают до точки росы при отрицательной расчетной температуре трубопровода.

Для трубопроводов с номинальным давлением свыше 35 МПа (350 кгс/см2) применение литой арматуры не допускается.

Арматуру с уплотнением фланцев "выступ-впадина" в случае применения специальных прокладок допускается применять при номинальном давлении до 35 МПа (350 кгс/см2)

Для обеспечения безопасной работы в системах автоматического регулирования при выборе регулирующей арматуры должны быть соблюдены условия:

Потери давления (перепад давления) на регулирующей арматуре при максимальном расходе рабочей среды должны быть не менее 40 % потерь давления во всей системе;

При течении жидкости перепад давления на регулирующей арматуре во всем диапазоне регулирования не должен превышать величины кавитационного перепада.

На корпусе арматуры на видном месте изготовитель наносит маркировку в следующем объеме:

Наименование или товарный знак изготовителя;

Заводской номер; - год изготовления;

Номинальное (рабочее) давление РN (Рр); - номинальный диаметр DN;

Температура рабочей среды (при маркировке рабочего давления Рр – обязательно);

Стрелка-указатель направления потока среды (при односторонней подаче среды); - обозначение изделия;

Марка стали и номер плавки (для корпусов, выполненных из отливок); - дополнительные знаки маркировки в соответствии с требованиями заказчиков, национальных стандартов.

В комплект поставки трубопроводной арматуры должна входить эксплуатационная документация в объеме:

Паспорт (ПС);

Руководство по эксплуатации (РЭ);

Эксплуатационная документация на комплектующие изделия (приводы, исполнительные механизмы, позиционеры, конечные выключатели и др.). Форма паспорта приведена в приложении Н (справочное). В руководстве по эксплуатации должны быть приведены: - описание конструкции и принцип действия арматуры;

Порядок сборки и разборки; - повторение и пояснение информации, включенной в маркировку арматуры;

Перечень материалов основных деталей арматуры;

Информация о видах опасных воздействий, если арматура может представлять опасность для жизни и здоровья людей или окружающей среды, и мерах по их предупреждению и предотвращению;

Показатели надежности и (или) показатели безопасности;

Объем входного контроля арматуры перед монтажом;

Методика проведения контрольных испытаний (проверок) арматуры и ее основных узлов, порядок технического обслуживания, ремонта и диагностирования.

Перед монтажом арматуру необходимо подвергнуть входному контролю и испытаниям в объеме, предусмотренном руководством по эксплуатации. Монтаж арматуры следует проводить с учетом требований безопасности в соответствии с руководством по эксплуатации.

Безопасность арматуры при эксплуатации обеспечивается выполнением следующих требований:

Арматуру и приводные устройства необходимо применять в соответствии с их показателями назначения в части рабочих параметров, сред, условий эксплуатации;

Арматуру следует эксплуатировать в соответствии с руководством по эксплуатации (включая проектные нештатные ситуации) и технологическими регламентами;

Запорная арматура должна быть полностью открыта или закрыта. Использовать запорную арматуру в качестве регулирующей не допускается;

Арматуру необходимо применять в соответствии с ее функциональным назначением;

Производственный контроль промышленной безопасности арматуры должен предусматривать систему мер по устранению возможных предельных со- стояний и предупреждению критических отказов арматуры.

Не допускается:

Эксплуатировать арматуру при отсутствии маркировки и эксплуатационной документации;

Проводить работы по устранению дефектов корпусных деталей и подтяжку резьбовых соединений, находящихся под давлением;

Использовать арматуру в качестве опоры для трубопровода;

Применять для управления арматурой рычаги, удлиняющие плечо рукоятки или маховика, не предусмотренные инструкцией по эксплуатации;

Применять удлинители к ключам для крепежных деталей.

ПОРЯДОК ВЫВОДА ТРУБОПРОВОДОВ В РЕМОНТ С ПОДГОТОВКОЙ РАБОЧЕГО МЕСТА И ОТКЛЮЧЕНИЯ ОТ ТЕПЛОВОЙ СХЕМЫ.

В случаях разрыва труб пароводяного тракта, коллекторов, паропроводов свежего пара, пара промперегрева и отборов, трубопроводов основного конденсата и питательной воды, их пароводяной арматуры, тройников, сварных и фланцевых соединений энергоблок (котел, турбина) должен быть отключен и немедленно остановлен.
При обнаружении трещин, выпучин, свищей в паропроводах свежего пара, пара промперегрева и отборов, трубопроводах питательной воды, в их пароводяной арматуре, тройниках, сварных и фланцевых соединениях следует немедленно поставить в известность об этом начальника смены цеха. Начальник смены обязан немедленно определить опасную зону, прекратить в ней все работы, удалить из нее персонал, оградить эту зону, вывесить знаки безопасности "Проход воспрещен", "Осторожно! Опасная зона" и принять срочные меры к отключению аварийного участка посредством дистанционных приводов. Если при отключении невозможно резервировать аварийный участок, то соответствующее оборудование, связанное с аварийным участком, должно быть остановлено. Время останова определяется главным инженером электростанции с уведомлением дежурного инженера энергосистемы.
При обнаружении разрушенных опор и подвесок трубопровод должен быть отключен, а крепление восстановлено. Время останова определяется главным инженером электростанции по согласованию с дежурным инженером энергосистемы.
При выявлении повреждений трубопровода или его крепления необходим тщательный анализ причин повреждений и разработка эффективных мер по повышению надежности. При выявлении течей или парений в арматуре, фланцевых соединениях или из-под изоляционного покрытия трубопроводов об этом должно быть немедленно сообщено начальнику смены. Начальник смены обязан оценить ситуацию и, если течь или парение представляет опасность для обслуживающего персонала или оборудования (например, парение из-под изоляции), принять меры. Течь или парение, не представляющие опасности для персонала или оборудования (например, парение из сальниковых уплотнений), должны осматриваться каждую смену.

Трубопроводы должны сдаваться в ремонт по истечении планового межремонтного периода, установленного на основании действующих норм технической эксплуатации и в большинстве случаев ремонтироваться одновременно с основным оборудованием. Сдача в ремонт трубопровода до истечения планового межремонтного периода необходима при аварийном повреждении или аварийном состоянии, подтвержденном актом с указанием причин, характера и размеров повреждения или износа. Дефекты трубопроводов, выявленные в межремонтный период и не вызывающие аварийного отключения, должны устраняться при любом ближайшем останове.
Паропроводы, работающие при температуре 450 °С и более, до капитального ремонта должны быть обследованы.

При сдаче в ремонт заказчик должен передать исполнителю конструкторско-ремонтную документацию, в которой содержатся сведения о состоянии трубопровода и его составных частей, о дефектах и повреждениях. Документация должна быть подготовлена в соответствия с ГОСТ 2.602-68*. После ремонта эта документация должна быть возвращена заказчику.

В соответствии с Правилами организации, технического обслуживания и ремонта оборудования при капитальном ремонте котла и станционных трубопроводов в номенклатуру должны включаться следующие работы:

Проверка технического состояния паропроводов;

Проверка технического состояния фланцевых соединений и крепежных деталей, замена шпилек, отработавших ресурс.

Проверка затяжек пружин, осмотр и ремонт подвесок и опор.

Контроль сварных швов и металла.

Переварка дефектных стыков, замена дефектных элементов трубопровода или системы крепления.

Осмотр и ремонт пробоотборников и охладителей отборов проб.

Ремонт тепловой изоляции.

При дефектации трубопроводов должны регистрироваться провисания, выпучины, свищи, трещины, коррозионные повреждения и другие видимые дефекты. При дефектации фланцевых соединений следует проверять состояние уплотнительных поверхностей и крепежных деталей. При дефектации опор и подвесок должны регистрироваться трещины в металле всех элементов опор и подвесок и остаточная деформация в пружинах.

Порядок и объем контроля за металлом трубопроводов определяется НТД. Контроль проводится под техническим руководством лаборатории металлов.

Заказчик вправе вмешиваться в производство работ подрядчика, если последний:

Допустил дефекты, которые могут быть скрыты последующими работами;

Не выполняет технологические и нормативные требования технической документации.

При ремонтных работах, связанных с монтажом или демонтажом блоков пружин или деталей трубопроводов, должна соблюдаться предусмотренная проектом производства работ или технологической картой последовательность операций, обеспечивающая устойчивость оставшихся или вновь устанавливаемых узлов и элементов трубопроводов и предотвращение падения его демонтируемых частей.

Перед разборкой неподвижной опоры или разрезкой трубопровода при переварке сварных стыков по заключениям дефектоскопистов или при замене каких-либо элементов трубопровода пружины на ближайших двух подвесках с каждой стороны ремонтируемого участка должны быть зафиксированы резьбовыми приварными стяжками. На расстоянии не более 1 м в обе стороны от места разгрузки трубопровода (или разборки неподвижной опоры) следует установить временные опоры (раскрепления). Эти опоры должны обеспечивать смещение трубопроводов вдоль оси, требуемое при сварке, и фиксацию трубопровода в проектном положении. Крепление этих концов к соседним трубопроводам, опорам или подвескам не допускается.

По обе стороны от ремонтируемого участка должно быть сделано кернение на трубах, расстояние между точками кернения должно быть зафиксировано в акте. При восстановлении трубопровода должна выполняться холодная растяжка с таким расчетом, чтобы отклонение расстояния между точками кернения не превышало 10 мм.

После демонтажа участка или элемента трубопровода свободные концы оставшихся труб должны быть закрыты заглушками.
При разрезке трубопровода в нескольких точках необходимо в каждом случае выполнять операции.
При любой разрезке трубопровода после заварки замыкающего стыка необходимо составление акта с занесением его в шнуровую книгу.
После окончания ремонтных работ, связанных с разрезкой трубопровода или заменой деталей его опор, необходимо проверить уклоны трубопровода.
При замене дефектной пружины заменяющая пружина должна быть подобрана по соответствующей допускаемой нагрузке, предварительно оттарирована и сжата до расчетной для холодного состояния высоты. После установки в блок подвески и снятия фиксирующих стяжек следует проверить высоту пружины и при необходимости выполнить подрегулировку. При приварке стяжек недопустимо соприкосновение витков пружин с электрической дугой, а при срезке - с пламенем горелки, что может вызвать повреждение пружин.
При замене пружины в опоре из-за ее повреждения или несоответствия расчетным нагрузкам следует:

Проложить пластины под блок пружины (если заменяющий блок имеет меньшую высоту, чем у замененного);

Разобрать опорную тумбу и уменьшить ее высоту (если заменяющий блок имеет большую высоту, чем замененный).
При изменении высот пружин в пружинной опоре необходимо вынуть регулируемый блок, на тарировочном устройстве изменить его высоту и установить в опору.
После завершения работ по регулировке высот пружин в эксплуатационных формулярах должны быть зафиксированы высоты пружин после регулировки (см. приложение 6), а на указателях перемещений уточнены положения трубопровода в холодном состоянии.
Вое изменения в конструкции трубопровода, произведенные в период его ремонта и согласованные с проектной организацией, необходимо отразить в паспорте или шнуровой книге данного трубопровода. При замене поврежденных деталей трубопровода или деталей, отработавших свой ресурс, в шнуровой книге должны быть зафиксированы соответствующие характеристики новых деталей.
После окончания ремонтных и наладочных работ в ремонтном журнале должна быть сделана соответствующая запись и составлен акт сдачи в эксплуатацию с занесением в шнуровую книгу.

ИСПЫТАНИЯ ТРУБОПРОВОДОВ

ВВОД В ЭКСПЛУАТАЦИЮ

Заполнение трубопровода после проведения ремонтных работ производится по утвержденному плану, предусматривающему технологические мероприятия, направленные на удаление паровоздушной фазы в трубопроводе. Как правило, эта операция проводится с применением эластичных разделителей.

Пуск трубопровода в эксплуатацию после выполнения ремонтных работ целесообразно проводить дегазированным при атмосферных условиях конденсатом.

Заполнение трубопровода стабильным конденсатом можно производить при любом начальном давлении внутри трубопровода. Если трубопровод заполняется нестабильным конденсатом или сжиженным углеводородным газом, то эта операция должна производиться после повышения давления находящихся в трубопроводе газа, воды или стабильного продукта выше упругости паров перекачиваемого продукта и после ввода в трубопровод механических разделителей.

При необходимости вытеснения из трубопровода воды с помощью нестабильного продукта должны быть приняты меры по защите от гидратообразования (применение разделителей, ингибиторов гидратообразования и т.п.)

При отсутствии механических разделителей рекомендуется до заполнения перекачиваемым продуктов частично заполнить трубопровод стабильным конденсатом.

Газ или вода, использованные при продувке (промывке) и последующем испытании продуктопровода и вытесняемые продуктом с помощью разделителей, выпускаются из трубопровода через продувочные патрубки.

При этом должен быть организован контроль за содержанием продукта в струе, выходящей из продувочного патрубка, для уменьшения опасности загрязнения окружающей среды и снижения потерь продукта.

После заполнения трубопровода дегазированным конденсатом поднимают давление выше минимально допустимого рабочего давления, которое будет определяться давлением дегазации, величиной потерь давления на трение, составом продукта, профилем трассы и температурой самой "горячей точки" трубопровода.

Подъем давления в трубопроводе производят путем закачки конденсата при закрытой задвижке в конце участка трубопровода.

После повышения давления в начале конденсатопродуктопровода выше минимально допустимого разрешается приступить к закачке нестабильного конденсата.

Поддержание минимально допустимого рабочего давления в трубопроводе при эксплуатации обеспечивается регулятором давления "до себя", установленным непосредственно перед потребителем.

(РБМК ) - серия энергетических ядерных реакторов, разработанных в Советском Союзе. Данный реактор - канальный, уран-графитовый (графито-водный по замедлителю), кипящего типа, на тепловых нейтронах; предназначен для выработки насыщенного пара давлением 70 кг/см?. Теплоноситель - кипящая вода.
Главный конструктор реакторной установки: НИКИЭТ, Академик Доллежаль Н. А.
Научный руководитель проекта: ИАЭ им. И. В. Курчатова, Академик Александров А. П.
Генеральный проектировщик (ЛАЭС): ГСПИ-11 (ВНИПИЭТ), Гутов А. И.
Главный конструктор турбоустановки: ХТГЗ, «Турбоатом», Косяк Ю. Ф.
Разработчик металлоконструкции: ЦНИИПСК, Мельников Н. И.
Головная материаловедческая организация: «Прометей», Копырин Г. И.
Проектировщик и изготовитель электромеханического оборудования СУЗ, КТО: КБ завода «Большевик», Клаас Ю. Г.

На данный момент серия этих реакторов включает в себя три поколения.


Головной реактор серии - 1-й и 2-й блоки Ленинградской АЭС.



1 История создания и эксплуатации

2 Характеристики РБМК

3 Конструкция

3.1 РБМК-1000

3.2 5-й энергоблок Курской АЭС (РБМК-1000 3-го поколения)

3.3 РБМК-1500

3.4 РБМК-2000, РБМК-3600 РБМКП-2400, РБМКП-4800 (прежние проекты)

3.4.1 РБМК-2000, РБМК-3600

3.4.2 РБМКП-2400, РБМКП-4800

3.5 МКЭР (современные проекты)

4 Достоинства

5 Недостатки

6 Практика эксплуатации


История создания и эксплуатации


Центральный зал РБМК-1500


(Игналинская АЭС)


Реактор Первый в мире АЭС был именно уран-графитовым канальным реактором с водяным теплоносителем АМ-1 («Атом Мирный»), установленный на Обнинской АЭС (1954 год). Отработка технологий уран-графитовых реакторов производилась на промышленных реакторах, в том числе реакторах "двойного" назначения (на которых помимо "военных" изотопов производилась электроэнергия): А (1948 год), АИ (ПО «Маяк»), И-1 (1955 год), ЭИ-2 (1958 год), серия АДЭ (Сибирский химический комбинат). С 1960-х годов в СССР начата разработка чисто энергетических реакторов типа, будущего РБМК. Некоторые конструкторские решения отрабатывались на опытных энергетических реакторах «Атом Мирный Большой»: АМБ-1 (1964 год) и АМБ-2 (1967 год), установленные на Белоярской АЭС.


Разработка собственно реакторов РБМК началась с середины 60-х годов и опиралась, в значительной мере, на большой и успешный опыт проектирования и строительства промышленных уран-графитовых реакторов. Основные преимущества реакторной установки виделись создателями в:

максимальном применении опыта уран-графитовых реакторов;

отработанных связях между заводами, налаженном выпуске основного оборудования;

состоянии промышленности и строительной индустрии СССР;

многообещающих нейтронно-физических характеристиках (малое обогащение топлива).

В целом конструктивные особенности реактора повторяли опыт предыдущих уран-графитовых реакторов. Новыми стали топливный канал, сборки тепловыделяющих элементов из новых конструкционных материалов - сплавов циркония, и с новой формой топлива - металлический уран был заменён его диоксидом, а также параметры теплоносителя. Реактор изначально проектировался как одноцелевой - для производства электрической и тепловой энергии.


Работы над проектом начались в ИАЭ (РНЦ КИ) и НИИ-8 (НИКИЭТ) в 1964 году. В 1965 году проект получил название Б-190, а его конструирование было поручено КБ завода «Большевик». В 1966 году решением министерского НТС работа над проектом была поручена НИИ-8 (НИКИЭТ), руководимому Доллежалем.


15 апреля 1966 г. главой Минсредмаша Е. П. Славским было подписано задание на проектирование Ленинградской атомной электростанции в 70 км по прямой к западу от Ленинграда в 4 км от поселка Сосновый Бор. В начале сентября 1966 г. проектное задание было закончено.


29 ноября 1966 г. Советом Министров СССР принято постановление № 800-252 о строительстве первой очереди ЛАЭС, определена организационная структура и кооперация предприятий для разработки проекта и сооружения АЭС.


Первый энергоблок с реактором типа РБМК-1000 запущен в 1973 году на Ленинградской АЭС.


При строительстве первых энергетических АЭС в нашей стране бытовало мнение, что атомная станция является надежным источником энергии, а возможные отказы и аварии - маловероятные, или даже гипотетические события. Кроме того, первые блоки сооружались внутри системы среднего машиностроения и предполагали эксплуатацию организациями этого министерства. Правила по безопасности на момент разработки либо отсутствовали, либо были несовершенны. По этой причине на первых энергетических реакторах серий РБМК-1000 и ВВЭР-440 не было в достаточном количестве систем безопасности, что потребовало в дальнейшем серьезной модернизации таких энергоблоков. В частности, в первоначальном проекте первых двух блоков РБМК-1000 Ленинградской АЭС не было гидробаллонов системы аварийного охлаждения реактора (САОР), количество аварийных насосов было недостаточным, отсутствовали обратные клапаны (ОК) на раздаточно-групповых коллекторах (РГК) и пр. В дальнейшем, в ходе модернизации, все эти недостатки были устранены.


Дальнейшее строительство блоков РБМК предполагалось осуществлять для нужд министерства энергетики СССР. Учитывая меньший опыт работы МИНЭНЕРГО с АЭС, в проект были внесены существенные изменения, повышающие безопасность энергоблоков. Кроме того, были внесены изменения, учитывающие опыт работы первых РБМК. В том числе были применены гидробаллоны САОР, функцию аварийных электронасосов САОР стали выполнять 5 насосов, применены обратные клапаны в РГК, сделаны другие доработки. По этим проектам были построены энергоблоки 1, 2 Курской АЭС и 1, 2 Чернобыльской АЭС. На этом этапе закончилось строительство энергоблоков РБМК-1000 первого поколения (6 энергоблоков).


Дальнейшее совершенствование АЭС с РБМК началось с проработки проектов второй очереди Ленинградской АЭС (энергоблоки 3, 4). Основной причиной доработки проекта стало ужесточение правил безопасности. В частности, была внедрена система баллонной САОР, САОР длительного расхолаживания, представленная 4 аварийными насосами. Система локализации аварии была представлена не баком-барботером, как ранее, а башней локализации аварий, способной аккумулировать и эффективно препятствовать выбросу радиоактивности при авариях с повреждением трубопроводов реактора. Были сделаны другие изменения. Основной особенностью энергоблоков 3, 4 Ленинградской АЭС стало техническое решение о расположении РГК на высотной отметке, превышающей высотную отметку активной зоны. Это позволяло в случае аварийной подачи воды в РГК иметь гарантированный залив активной зоны водой. В дальнейшем это решение не применялось.


После строительства энергоблоков 3, 4 Ленинградской АЭС, находящейся в ведении министерства среднего машиностроения, началось проектирование реакторов РБМК-1000 для нужд министерства энергетики СССР. Как отмечалось выше, при разработке АЭС для МИНЭНЕРГО, в проект вносились дополнительные изменения, призванные повысить надежность и безопасность АЭС, а также увеличить ее экономический потенциал. В частности, при доработке вторых очередей РБМК был применен барабан-сепаратор (БС) большего диаметра (внутренний диаметр доведен до 2.6 м), внедрена трехканальная система САОР, первые два канала которых снабжались водой от гидробаллонов, третий - от питательных насосов. Увеличено количество насосов аварийной подачи воды в реактор до 9 штук и внесены другие изменения, существенно повысившее безопасность энергоблока (принципиально, уровень исполнения САОР удовлетворял не только документам, действовавшим в момент проектирования АЭС, но и, во многом, современным требованиям). Существенно увеличились возможности системы локализации аварий, которая была рассчитана на противодействие аварии, вызванной гильотинным разрывом трубопровода максимального диаметра (напорный коллектор главных циркуляционных насосов (ГЦН) Ду 900). Вместо баков-барботеров первых очередей РБМК и башен локализации 3,4 блоков ЛАЭС, на РБМК второго поколения МИНЭНЕРГО были применены двухэтажные бассейны-локализаторы, что существенно повысило возможности системы локализации аварий (СЛА). Отсутствие контаймента компенсировалось стратегией применения системы плотно-прочных боксов (ППБ), в которых располагались трубопроводы контура многократной принудительной циркуляции теплоносителя. Конструкция ППБ, толщина стен рассчитывались из условия сохранения целостности помещений при разрыве находящегося в нем оборудования (вплоть до напорного коллектора ГЦН Ду 900 мм). ППБ не охватывался БС и пароводяные коммуникации. Также при строительстве АЭС реакторные отделения строились дубль-блоком, что означает, что реакторы двух энергоблоков находятся по существу в одном здании (в отличие от предыдущих АЭС с РБМК, в которых каждый реактор находился в отдельном здании). Так были исполнены реакторы РБМК-1000 второго поколения: энергоблоки 3 и 4 Курской АЭС, 3 и 4 Чернобыльской АЭС, 1 и 2 Смоленской АЭС (итого, вместе с 3 и 4 блоком Ленинградской АЭС, 8 энергоблоков).


В общей сложности сдано в эксплуатацию 17 энергоблоков с РБМК. Срок окупаемости серийных блоков второго поколения составил 4-5 лет.


Вклад АЭС с реакторами РБМК в общую выработку электроэнергии всеми АЭС России составляет порядка 50 % .


До аварии на Чернобыльской АЭС в СССР существовали обширные планы строительства таких реакторов, однако после аварии планы по сооружению энергоблоков РБМК на новых площадках были свернуты. После 1986 года были пущены два реактора РБМК: РБМК-1000 Смоленской АЭС (1990г) и РБМК-1500 Игналинской АЭС (1987). Еще один реактор РБМК-1000 5-го блока Курской АЭС находится в стадии достройки (~70-80 % готовности). После аварии на Чернобыльской АЭС были проведены дополнительные исследования и модернизация. В настоящее время реакторы РБМК не уступают по безопасности и экономическим показателям отечественным и зарубежным АЭС того же периода постройки. На сегодняшний день приемлемый уровень безопасности РБМК подтвержден на национальном уровне, а также международными экспертизами.


Развитие концепции канального уран-графитового реактора осуществляется в проектах МКЭР - Многопетлевой Канальный Энергетический Реактор .

Характеристики РБМК

Характеристика РБМК-1000 РБМК-1500 РБМКП-2400
(проект)
МКЭР-1500
(проект)
Тепловая мощность реактора, МВт 3200 4800 5400 4250
Электрическая мощность блока, МВт 1000 1500 2000 1500
К. п. д. блока, % 31,3 31,3 37,0 35,2
Давление пара перед турбиной, атм 65 65 65 65?
Температура пара перед турбиной, °С 280 280 450
Размеры активной зоны, м:
высота 7 7 7,05 7
диаметр (ширина?длина) 11,8 11,8 7,05?25,38 14
192 189 220
Обогащение, % 235U
испарительный канал 2,6-3,0 2,6-2,8 1,8 2-3,2
перегревательный канал - - 2,2 -
Число каналов:
испарительных 1693-1661 1661 1920 1824
перегревательных - - 960 -
Среднее выгорание, МВт·сут/кг:
в испарительном канале 22,5 25,4 20,2 30-45
в перегревательном канале - - 18,9 -
Размеры оболочки ТВЭЛа (диаметр?толщина), мм:
испарительный канал 13,5?0,9 13,5?0,9 13,5?0.9 -
перегревательный канал - - 10?0,3 -
Материал оболочек ТВЭЛов:
испарительный канал Nb Zr + 2,5 % Nb Zr + 2,5 % Nb -
перегревательный канал - - Нерж. сталь -

Конструкция

Схема энергоблока АЭС
с реактором типа РБМК

Одной из целей при разработке реактора РБМК было улучшение топливного цикла. Решение этой проблемы связано с разработкой конструкционных материалов, слабо поглощающих нейтроны и мало отличающихся по своим механическим свойствам от нержавеющей стали. Снижение поглощения нейтронов в конструкционных материалах даёт возможность использовать более дешёвое ядерное топливо с низким обогащением урана (по первоначальному проекту - 1,8 %).

РБМК-1000

Схема энергоблока АЭС
с реактором типа РБМК Тепловыделяющая сборка реактора РБМК:
1 - дистанционирущая проставка
2 - оболочка ТВЭЛ
3 - таблетки ядерного топлива

Основу активной зоны РБМК-1000 составляет графитовый цилиндр высотой 7 м и диаметром 11,8 м, сложенный из блоков меньшего размера, который выполняет роль замедлителя. Графит пронизан большим количеством вертикальных отверстий, через каждое из которых проходит труба давления (также называемая технологическим каналом (ТК)). Центральная часть трубы давления, расположенная в активной зоне, изготовлена из сплава циркония (Zr + 2,5 % Nb), обладающего высокими механическими и коррозионными свойствами, верхние и нижние части трубы давления - из нержавеющей стали. Циркониевая и стальные части трубы давления соединены сварными переходниками.


При проектировании энергоблоков РБМК, в силу несовершенства расчетных методик, был выбран не оптимальным шаг решетки каналов. В результате реактор оказался несколько перезамедлен, что приводило к положительным значениям парового коэффициента реактивности в рабочей области, превышающим долю запаздывающих нейтронов. До аварии на ЧАЭС используемая методика расчета кривой парового коэффициента реактивности (программа BMP), показывала, что несмотря на положительный ПКР в области рабочих паросодержаний, по мере роста паросодержания эта величина меняет знак, так что эффект обезвоживания оказывался отрицательным. Соответственно состав и производительность систем безопасности проектировалась с учетом этой характеристики. Однако, как оказалось после аварии на Чернобыльской АЭС, расчетное значение парового коэффициента реактивности в областях с высоким паросодержанием было получено неверно: вместо отрицательного, он оказался положительным. Для изменения парового коэффициента реактивности был выполнен ряд мероприятий, в том числе в некоторые каналы вместо топлива установлены дополнительные поглотители. В последующем, для улучшения экономических показателей энергоблоков с РБМК дополнительные поглотители извлекались, для достижения заданных нейтроно-физических характеристик стали применять топливо более высокого обогащения с дополнительным поглотителем (оксид эрбия).


В каждом топливном канале установлена кассета, составленная из двух тепловыделяющих сборок (ТВС) - нижней и верхней. В каждую сборку входит 18 стержневых ТВЭЛов. Оболочка ТВЭЛа заполнена таблетками из двуокиси урана. По первоначальному проекту обогащение по урану 235 составляло 1,8 %, но по мере накопления опыта эксплуатации РБМК оказалось целесообразным повышать обогащение . Повышение обогащения в сочетании с применением выгорающего поглотителя в топливе позволило увеличить управляемость реактора, повысить безопасность и улучшить его экономические показатели. В настоящее время осуществляется переход на топливо с обогащением 3,0 %.


Реактор РБМК работает по одноконтурной схеме. Циркуляция теплоносителя осуществляется в контуре многократной принудительной циркуляции (КМПЦ). В активной зоне вода, охлаждающая твэлы, частично испаряется и образующаяся пароводяная смесь поступает в барабаны-сепараторы. В барабан-сепараторах происходит сепарация пара, которая поступает на турбоагрегат. Остающаяся вода смешивается с питательной водой и с помощью главных циркуляционных насосов (ГЦН) подается в активную зону реактора. Отсепарированный насыщенный пар (температура ~284 °C) под давлением 70-65 кгс/см2 поступает на два турбогенератора электрической мощностью по 500 МВт. Отработанный пар конденсируется, после чего, пройдя через регенеративные подогреватели и деаэратор подается с помощью питательных насосов (ПЭН) в КМПЦ.


Реакторы РБМК-1000 установлены на Ленинградской АЭС, Курской АЭС, Чернобыльской АЭС, Смоленской АЭС.

5-й энергоблок Курской АЭС
(РБМК-1000 3-го поколения)

На строящемся 5-м блоке Курской АЭС (готовность на данный момент 70 – 80%), помимо прочих мероприятий по усовершенствованию РБМК, принципиальной новизной обладает конструкция графитовой кладки реактора, имеющей в сечении вид восьмигранника. За счет уменьшения объема графита изменяется отношение доли топлива к доле замедлителя, что имеет существенное влияние на паровой коэффициент реактивности. В результате, при гарантированном отрицательном паровом коэффициенте реактивности, реактор РБМК-1000 5-го блока Курской АЭС работает с минимальным ОЗР, что дополнительно увеличивает его экономическую эффективность. В будущем возможно рассмотреть вопрос о повышении обогащения топлива для РБМК 5-го блока Курской АЭС, что позволит еще улучшить его экономические показатели, сохраняя высокий уровень безопасности.


Данный блок формально относится к 3-му поколению РБМК (к нему относится также 3-й блок Смоленской АЭС), но, по глубине произведенных изменений, правильнее было бы отнести его к поколению «3+».

РБМК-1500

В РБМК-1500 мощность повышена за счёт увеличения удельной энергонапряжённости активной зоны путём увеличения мощности ТК в 1,5 раза при сохранении его конструкции. Это достигается интенсификацией теплосъема с ТВЭЛ при помощи применения в ТВК специальных интенсификаторов теплообмена (турбулизаторов) в верхней части обеих ТВС. Всё вместе это позволяет сохранить прежние габариты и общую конструкцию реактора.

Интенсификаторы ТВС РБМК-1500 следует отличать от дистанцирующих решеток, установленных на каждой ТВС в количестве 10шт., которые также содержат турбулизаторы.

В процессе эксплуатации выяснилось, что, из-за высоких неравномерностей энерговыделения, периодически возникающие повышенные (пиковые) мощности в отдельных каналах приводят к растрескиванию оболочек ТВЭЛ. По этой причине мощность была снижена до 1300МВт.


Данные реакторы установлены на Игналинской АЭС (Литва).

РБМК-2000, РБМК-3600
РБМКП-2400, РБМКП-4800
(прежние проекты)

В силу общей особенности конструкции реакторов РБМК, в которой активная зона, подобно кубикам, набиралась из большого числа однотипных элементов, идея дальнейшего увеличения мощности напрашивалась сама собой.

РБМК-2000, РБМК-3600

В проекте РБМК-2000 увеличение мощности планировалось за счёт увеличения диаметра топливного канала, числа ТВЭЛ-ов в кассете и шага трубной решетки ТК. При этом сам реактор оставался в прежних габаритах.


РБМК-3600 был только концептуальным проектом, о его конструктивных особенностях известно мало. Вероятно, что вопрос повышения удельной мощности в нём решался, подобно РБМК-1500, путём интенсификации теплосъёма, без изменения конструкции его основы РБМК-2000 - и, следовательно, без увеличения активной зоны.

РБМКП-2400, РБМКП-4800

МКЭР (современные проекты)

Проекты РУ МКЭР являются эволюционным развитием поколения реакторов РБМК. В них учтены новые, ужесточившиеся, требования безопасности и устранены главные недостатки прежних реакторов данного типа.


Работа МКЭР-800 и МКЭР-1000 основана на естественной циркуляции теплоносителя, интенсифицируемой водо-водяными инжекторами. МКЭР-1500 ввиду больших размеров и мощности работет с принудительной циркуляцией теплоносителя, развиваемой главными циркуляционными насосами. Реакторы серии МКЭР оснащены двойной защитной оболочкой - контайментом: первая - стальная, вторая - железобетонная без создания предварительно напряженной конструкции. Диаметр защитной оболочки МКЭР-1500 составляет 56 метров (соответствует диаметру гермооболочки Бушерской АЭС). Ввиду хорошего баланса нейтронов РУ МКЭР имеют весьма низкий расход природного урана (у МКЭР-1500 он составляет 16,7 г/МВт·ч(э) - самый низкий в мире).


Ожидаемый КПД - 35,2 %, срок службы 50 лет, обогащение 2,4 %.

Достоинства

Пониженное, по сравнению с корпусными ВВЭР, давление воды в первом контуре;

Благодаря канальной конструкции отсутствует дорогостоящий корпус;

Нет дорогостоящих и сложных парогенераторов;

Нет принципиальных ограничений на размер активной зоны (например, она может быть в форме параллелепипеда, как в проектах РБМКП);

Независимый контур системы управления и защиты (СУЗ);

Широкие возможности осуществления регулярного контроля состояния узлов активной зоны (например, труб технологических каналов) без необходимости остановки реактора, и также

высокая ремонтопригодность;

Более легкое (по сравнению с корпусными ВВЭР протекание аварий, вызванных разгерметизацией циркуляционного контура, а также переходных режимов, вызванных отказами оборудования;

Возможность формировать оптимальные нейтронно-физические свойства активной зоны реактора (коэффициенты реактивности) на стадии проектирования;

Незначительные коэффициенты реактивности по плотности теплоносителя (современный РБМК);

Замена топлива без остановки реактора благодаря независимости каналов друг от друга (в частности, повышает КИУМ);

Возможность наработки радионуклидов технического и медицинского назначения, а также радиационного легирования различных материалов;

Отсутствие (по сравнению с корпусными ВВЭР) необходимости применения борного регулирования;

Более равномерное и глубокое (по сравнению с корпусными ВВЭР) выгорание ядерного топлива;

Возможность работы реактора с низким ОЗР - оперативным запасом реактивности (современные проекты, например, строящийся пятый энергоблок Курской АЭС);

Более дешевое топливо из-за более низкой степени обогащения, хотя загрузка топливом значительно выше (в общем топливном цикле используют переработку отработанного топлива от

Поканальное регулирование расходов теплоносителя через каналы, позволяющее контролировать теплотехническую надежность активной зоны;

Тепловая инертность активной зоны, существенно увеличивающая запасы до повреждения топлива во время возможных аварий;

Независимость петель контура охлаждения реактора (в РБМК - 2 петли), что позволяет локализовать аварии в одной петле.

Недостатки

Большое количество трубопроводов и различных вспомогательных подсистем требует наличия большого количества высококвалифицированного персонала;

Необходимость проведения поканального регулирования расходов, что может повлечь за собой аварии, связанные с прекращением расхода теплоносителя через канал;

Более высокая нагрузка на оперативный персонал по сравнению с ВВЭР, связанная с большим количеством узлов (например запорно-регулирующей арматуры);

Бо"льшее количество активированных конструкционных материалов из-за больших размеров АЗ и металлоёмкости РБМК, остающихся после вывода из эксплуатации и требующих утилизации.

Практика эксплуатации

МАГАТЭ, База данных PRIS.
Кумулятивный КИУМ по всем действующим энергоблокам:
РБМК - 69,71%; ВВЭР - 71,54%.
Данные с начала ввода блока по 2008г.
Российская Федерация. Только действующие блоки.

Аварии на энергоблоках с РБМК

Наиболее серьезные инциденты на АЭС с реакторами РБМК:

1975 - разрыв одного канала на первом блоке ЛАЭС;

1982 - разрыв одного канала на первом блоке ЧАЭС;

1986 - авария с массовым разрывом каналов на четвертом блоке ЧАЭС;

1991 - пожар в машинном зале второго блока ЧАЭС;

1992 - разрыв одного канала на третьем блоке ЛАЭС;

Авария 1982 была связана с действиями оперативного персонала, грубо нарушившего технологический регламент.


В аварии 1986 года, помимо нарушений персонала, проявились опасные свойства РБМК, существенно повлиявшие на масштаб аварии. После аварии проведена большая научно-техническая работа. Проведенные мероприятия искоренили такие опасные свойства.


Авария 1991 года в машинном зале второго блока ЧАЭС была вызвана отказами оборудования, не зависящими от реакторной установки. В процессе аварии, вследствие пожара, произошло обрушение кровли машинного зала. В результате пожара и обрушения кровли были повреждены трубопроводы подпитки реактора водой, а также заблокирован в открытом положении паросбросный клапан БРУ-Б. Несмотря на многочисленные отказы систем и оборудования, сопровождавшие аварию, реактор проявил хорошие свойства самозащищенности, что предотвратило разогрев и повреждение топлива.


1992 - разрыв одного канала на третьем блоке ЛАЭС был вызван дефектом клапана.

Состояние на 2010 год

По состоянию на 2010 год эксплуатируется 11 энергоблоков с РБМК на трёх АЭС: Ленинградской, Курской, Смоленской. По политическим причинам (в соответствии с обязательствами Литвы перед Евросоюзом) остановлено два энергоблока на Игналинской АЭС, три энергоблока на Чернобыльской АЭС (ещё один прекратил существование в результате аварии). Ведётся строительство РБМК третьей очереди на пятом энергоблокеКурской АЭС.

Список сокращений, терминология РБМК

A3 - аварийная защита; активная зона
АЗМ - аварийная защита (сигнал) по превышению мощности
АЗРТ - аварийная защита реакторной установки по технологическим параметрам (cистема)
АЗС - аварийная защита (сигнал) по скорости нарастания мощности
АР - автоматический регулятор
АСКРО - автоматизированная система контроля радиационной обстановки
АЭС - атомная электростанция
БАЗ - быстродействующая аварийная защита
ББ - бассейн-барботер
БИК - боковая ионизационная камера
БОУ - блочная очистительная установка
БРУ-Д - быстродействующее редукционное устройство со сбросом в деаэратор
БРУ-К - быстродействующее редукционное устройство со сбросом в конденсатор турбины
БС - барабан-сепаратор
БЩУ - блочный щит управления
ВИК - высотная ионизационная камера
ВИУБ (СИУБ) - ведущий (старший) инженер управления блоком
ВИУР (СИУР) - ведущий (старший) инженер управления реактором
ВИУТ (СИУТ) - ведущий (старший) инженер управления турбиной
ГПК - главный предохранительный клапан
ГЦН - главный циркуляционный насос
ДКЭ (р), (в) - датчик контроля энерговыделения (радиальный), (высотный)
ДП - дополнительный поглотитель
ДРЕГ - диагностическая регистрация параметров
ЗРК - запорно-регулирующий клапан
КГО - контроль герметичности оболочки (ТВЭЛ-ов)
КД - камера деления
КИУМ - коэффициент использования установленной мощности
КМПЦ - контур многократной принудительной циркуляции
КН - конденсатный насос
КЦТК - контроль целостности технологических каналов (система)
ЛАЗ - локальная аварийная защита
ЛАР - локальный автоматический регулятор
МАГАТЭ - Международное агентство по атомной энергии
МПА - максимальная проектная авария
НВК - нижние водяные коммуникации
НК - напорный коллектор
НСБ - начальник смены блока
НСС - начальник смены станции
ОЗР - оперативный запас реактивности (условных "стержней")
ОК - обратный клапан
ОПБ - «Общие положения безопасности»
ПБЯ - «Правила ядерной безопасности»
ПВК - пароводяные коммуникации
ПН - питательный насос
ППБ - плотно-прочный бокс
ПРИЗМА - программа измерения мощности аппарата
ПЭН - питательный электронасос
РБМК - реактор большой мощности канальный (кипящий)
РГК - раздаточно-групповой коллектор
РЗМ - разгрузочно-загрузочная машина
РК СУЗ - рабочий канал системы управления и защиты
РП - реакторное пространство
РР - ручное регулирование
РУ - реакторная установка
САОР - система аварийного охлаждения реактора
СБ - системы безопасности
СЛА - система локализации аварий
СП - стержень-поглотитель
СПИР - система продувки и расхолаживания
СРК - стопорно-регулирующий клапан
СТК - система технологического контроля
СУЗ - система управления и защиты
СФКРЭ - система физического контроля распределения энерговыделения
СЦК "Скала" - система централизованного контроля (СКАЛА - система контроля аппарата Ленинградской Атомной)
ТВС - тепловыделяющая сборка
ТВЭЛ - тепловыделяющий элемент
ТГ - турбогенератор
ТК - технологический канал
УСП - укороченный стержень-поглотитель (ручной)
ЯТ - ядерное топливо
ЯТЦ - ядерный топливный цикл
ЯЭУ - ядерная энергетическая установка


Материалы: dic.academic.ru

Недостатки Реактора РБМК-1000:

Большое количество трубопроводов и различных вспомогательных подсистем, что требует наличия большого количества высококвалифицированного персонала;

Необходимость проведения поканального регулирования расходов, что может повлечь за собой аварии, связанные с прекращением расхода теплоносителя через канал;

Более высокая нагрузка на оперативный персонал по сравнению с ВВЭР, связанная с большими размерами активной зоны и постоянно ведущимися перегрузками топлива в каналах.

Положительный паровой коэффициент реактивности. Во время работы реактора через активную зону прокачивается вода, используемая в качестве теплоносителя. Внутри реактора она кипит, частично превращаясь в пар. Реактор имел положительный паровой коэффициент реактивности, т. е. чем больше пара, тем больше мощность, выделяющаяся за счёт ядерных реакций. На малой мощности, на которой работал энергоблок во время эксперимента, воздействие положительного парового коэффициента не компенсировалось другими явлениями, влияющими на реактивность, и реактор имел положительный мощностный коэффициент реактивности.

Это значит, что существовала положительная обратная связь - рост мощности вызывал такие процессы в активной зоне, которые приводили к ещё большему росту мощности. Это делало реактор нестабильным и опасным. Кроме того, операторы не были проинформированы о том, что на низких мощностях может возникнуть положительная обратная связь. «Концевой эффект».

Ещё более опасной была ошибка в конструкции управляющих стержней. Для управления мощностью ядерной реакции в активную зону вводятся стержни, содержащие вещество, поглощающее нейтроны. Когда стержень выведен из активной зоны, в канале остаётся вода, которая тоже поглощает нейтроны. Для того, чтобы устранить нежелательное влияние этой воды, в РБМК под стержнями были помещены вытеснители из непоглощающего материала (графита).

Но при полностью поднятом стержне под вытеснителем оставался столб воды высотой 1,5 метра. При движении стержня из верхнего положения, в верхнюю часть зоны входит поглотитель и вносит отрицательную реактивность, а в нижней части канала графитовый вытеснитель замещает воду и вносит положительную реактивность. В момент аварии нейтронное поле имело провал в середине активной зоны и два максимума - в верхней и нижней её части.

При таком распределении поля, суммарная реактивность, вносимая стержнями, в течение первых трёх секунд движения была положительной. Это так называемый «концевой эффект», вследствие которого срабатывание аварийной защиты в первые секунды увеличивало мощность, вместо того чтобы немедленно остановить реактор. (Концево́й эффе́кт в РБМК - явление, заключающееся в кратковременном увеличении реактивности ядерного реактора (вместо ожидаемого снижения), наблюдавшееся на реакторах РБМК-1000 при опускании стержней системы управления и защиты (СУЗ) из крайнего верхнего (или близкого к нему) положения. Эффект был вызван неудачной конструкцией стержней.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Как приготовить творожный десерт с желатином Как приготовить творожный десерт с желатином Пюре из сельдерея – с вершками или корешками? Пюре из сельдерея – с вершками или корешками? Повышенный аппетит - причины, лечение, травы снижающие аппетит и подавляющие чувство голода Повышенный аппетит - причины, лечение, травы снижающие аппетит и подавляющие чувство голода