Кольцевые шлейфы esserbus и esserbus-Plus для системы пожарной безопасности. Пожарная сигнализация Напряжение в шлейфе пожарной сигнализации

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Давайте разберемся что такое шлейф сигнализации (ШС) и как правильно его организовать. Начнем с того, что охранный шлейф представляет собой соединительную линию (электрическую цепь), объединяющую различные датчики сигнализации (ДС) или извещатели - в контексте данной статьи это синонимы.

Кроме того, в шлейфе присутствует оконечное устройство (ОУ), которое согласует его с приемно-контрольным прибором (ПКП).

В качестве оконечного устройства могут выступать:

  • резисторы;
  • конденсаторы;
  • диоды.

Что именно устанавливается в конце шлейфа зависит от конкретной модели ПКП. Стоит заметить, что в системах охранной сигнализации чаще всего используются резисторы, поэтому будем ориентироваться на этот вариант. Структурная схема шлейфа приведена на рисунке 1.

Я сразу нарисовал все возможные типы датчиков, их работу мы сейчас рассмотрим, но в реальной ситуации используется, как правило, один вариант подключения и извещатели с одинаковой тактикой формирования тревожного извещения.

Возможны и комбинации различных подключений, но они встречаются достаточно редко. Теперь давайте перейдем к рассмотрению основных типов шлейфов и принципа их действия.

Внимание! Нумерация типов шлейфов в этой статье условна. Более того, каждый производитель в понятие типа ШС может вкладывать свое толкование. Обязательно имейте это ввиду!

ТИПЫ ШЛЕЙФОВ СИГНАЛИЗАЦИИ

1. ШС с датчиками, работающими "на размыкание".

В охранной сигнализации очень часто встречающийся вариант. При срабатывании извещателя электрическая цепь разрывается, ток в шлейфе падает до нулевого значения. То же самое произойдет при отсутствии питания на извещателе. А вот в случае неисправности датчика возможны два варианта:

  • контакты разомкнутся;
  • останутся замкнутыми даже при обнаружении нарушителя.

С первым случаем все ясно и просто - прибор сработает и неисправность таким образом заявит о себе. Второй вариант опасен тем, что обнаружить его можно только при полной проверке работоспособности датчика, которую каждый день никто не делает. Утешает только что такие случаи редки, но, тем не менее, они бывают.

2. ШС с датчиком, работающим на "замыкание".

Отличие от первого варианта разве что в схеме подключения и в том, что при срабатывании шлейф замыкается. В охранной сигнализации используется редко, по крайней мере я с таким способом не сталкивался.

3. Использование извещателя с питанием по шлейфу.

Пусть не часто, но такие датчики используются. Если в первых двух случаях напряжение подается по отдельной линии, то здесь извещатель работает от напряжения, подаваемого на ШС приемно-контрольным прибором. В этом случае сигнал тревога формируется увеличением потребления ДС тока, что отслеживается ПКП.

При этом количество подключаемых датчиков может быть ограничено несколькими штуками. Конкретная величина для различных их типов должна указываться в паспорте охранного прибора (равно как и возможность использования такого варианта).

4. Адресный шлейф сигнализации.

Если до сих пор мы рассматривали случаи, когда осуществлялся токовый контроль ШС, то при использовании адресных извещателей информации об их состоянии передается в цифровом виде. Соответственно информативность системы сигнализации при этом возрастает. ДС может диагностировать свое состояние и передавать его на контрольную панель.

ПАРАМЕТРЫ И НЕИСПРАВНОСТИ

Поскольку шлейф охранной сигнализации является электрической цепью, то и характеризуется он такими электрическими параметрами как ток, напряжение и сопротивление. Причем первые два являются вторичными, а работоспособность ШС зависит от сопротивления, которое определяет три основных его состояния:

  • "норма";
  • "обрыв";
  • "замыкание".

Нормальное сопротивление шлейфа должно, как правило, не превышать 1 кОм, причем без учета величины оконечного резистора.

Стоит немного пояснить принцип работы связки ПКП-ШС-ОУ.

Прибор подает на шлейф напряжение, поскольку в нормальном состоянии цепь замкнута в ней возникает электрический ток. Его значение характеризует состояние ШС. Нормальные пределы величины тока задаются оконечным устройством. Отклонение в ту или иную сторону вызывает срабатывание сигнализации.

Сопротивление самого шлейфа, а туда входят также сопротивления переходных контактов в датчиках, определяет максимально допустимые отклонения. При коротком замыкании всего или части ШС (одна из неисправностей) происходит увеличение тока потребления, а обрыв - к его исчезновению. В этом и заключается суть токового контроля.

Таким образом есть еще один критичный параметр - сопротивление утечки между проводами шлейфа, поскольку он является двухпроводной линией, или "землей" и одним из проводников. Эта характеристика указана в паспорте ПКП, но лучше будет если ее значение составит порядка 1 мОм. Хотя многие приборы работают при утечках в несколько десятков кОм.

В завершение один иногда встречающийся вопрос: какова максимальная длина шлейфа охранной сигнализации? Ответ - любая при которой обеспечиваются рассмотренные выше электрические параметры.

* * *

© 2014 - 2019 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

Новые технологии, энергосберегающие компоненты, способность программного обеспечения выполнять определенные действия и другие новшества в последние годы изменили не только технологии изготовления пожарных извещателей, но и методы их установки и монтажа. Это, в свою очередь, вызвало изменения в существующих стандартах и нормативах по проектированию систем пожарной сигнализации. Например, давно применяющаяся и считавшаяся до недавнего времени традиционной топология радиального шлейфа в настоящее время все больше и больше заменяется кольцевой топологией. Возможность установки большого количества пожарных извещателей в одном шлейфе без снижения их надежности и работоспособности делает применение кольцевых шлейфов довольно привлекательным по сравнению с радиальными. Современные кольцевые шлейфы являются многофункциональными и позволяют кроме подключения автоматических и ручных пожарных извещателей управлять дополнительным оборудованием с помощью различных модулей входов/выходов.

Преимущества использования аналогово-кольцевых шлейфов:

Рис.1. Радиальные шлейфы Рис.2. Кольцевой шлейф

  • Предельная информативность шлейфа, достигаемая применением интеллектуальных пожарных извещателей и их полной адресацией;
  • Высокая надёжность кольцевого шлейфа, по сравнению с радиальным - при обрыве или коротком замыкании, радиальный шлейф частично, или полностью выходит из строя, в кольцевом шлейфе устройства, называемые изоляторами, автоматически отсекают повреждённый участок, и шлейф продолжает функционировать как две радиальные ветви. При обрыве шлейфа, изоляторы не активизируются;
  • Возможность создания радиальных ответвлений, если это необходимо для оптимизации кабельной схемы;
  • Меньшие трудозатраты и расход кабельных материалов при одинаковом количестве извещателей.

Esserbus - максимум надежности, минимум затрат
Пожарные приемно-контрольные приборы ESSER поддерживают кольцевые шлейфы esserbus и esserbus-PLus. Кольцевой шлейф esserbus это двухпроводный шлейф, обладающий следующими особенностями:

  • Максимальная длина шлейфа 3500 м;
  • До 127 устройств на шлейф;
  • До 127 групп извещателей на шлейф;
  • До 63 радиальных ответвлений (до 32 устройств в ответвлении) на шлейф;
  • До 32 транспондеров на шлейф (до 100 транспондеров на ПКП);
  • Напряжение в шлейфе 27,5 в.

В дополнении к вышеописанным особенностями технологий esserbus существует кольцевой шлейф esserbus-PLus с улучшенными характеристиками. Новый шлейф поддерживает автоматические извещатели серии IQ8Quad со встроенными устройствами оповещения, адресные устройства оповещения серии IQ8Alarm и беспроводные устройства IQ8Wireless. Для подключения всех этих устройств не требуется прокладки дополнительных проводов, т.е. передача данных, сигналы и питание всех устройств шлейфа осуществляется всего по двум проводам. Кольцевой шлейф esserbus-PLus поддерживается только ПКП серии IQ8Control.


Шлейф пожарной сигнализации - это линия связи между пожарным приёмно-контрольным прибором, пожарными извещателями и другими устройствами, предназначенными для работы в этой линии. Физически шлейф может быть выполнен посредством проводных линий связи,оптико-волоконных линий связи, по радиоканалу и т. д. Наиболее часто шлейфы выполняют две основные функции: приём (передача) информации от пожарных извещателей и подача питания на извещатели. Проводные шлейфы в зависимости от количества проводов делятся на двух-, трёх-, четырёхпроводные и т.д. Как правило, связь безадресных приемно-контрольных приборов и безадресных пожарных извещателей реализуется при помощи двухпроводного шлейфа, т. е. приём (передача) информации от пожарных извещателей и подача питания на извещатели осуществляются по одной и той же двухпроводной линии. В этом случае приемно-контрольный прибор проводит непрерывный контроль тока, протекающего в шлейфе и, в зависимости от величины этого тока, может выдавать извещения: «Норма», «Внимание», «Пожар», «Обрыв», «Короткое замыкание». Адресные шлейфы пожарной сигнализации с включенными в них адресными пожарными извещателями позволяют регистрировать и отображать на адресном приемно-контрольном приборе не только режим работы извещателя, но и его адрес. Обмен данными между адресным приемно-контрольным прибором и извещателями (протокол обмена), а также электропитание извещателей могут быть выполнены различными способами. В целях разделения линий обмена информацией и линии питания извещателей нередко используют трёх- и четырёхпроводные шлейфы, однако для снижения затрат на проводные линии связи многие производители адресных систем передают напряжение питания и осуществляют обмен информацией между прибором и извещателями по двухпроводному шлейфу. Протокол обмена (последовательность. временные характеристики, амплитуда и информационное содержание импульсов) в адресных системах пожарной сигнализации не является стандартным. Чаще всего он разрабатывается фирмами-изготовителями адресных систем под конкретное оборудование или серию. Преимущества адресных шлейфов очевидны, однако существуют определённые сложности их разработки и применения, связанные с проблемами электромагнитной совместимости. Наличие цифрового обмена информацией с использованием импульсных последовательностей ведёт к тому, что наведение на проводные линии связи импульсной помехи от внешних источников электромагнитного излучения может привести к ошибкам в работе системы. В связи с этим в качестве проводных линий связи в адресных шлейфах целесообразно, а в ряде случаев обязательно, применение экранированного провода либо проводов, выполненных в виде «витая пара».

Шлейф сигнализации (ШС) - это электрическая цепь, содержащая:

  • датчики (ДС);
  • соединительные провода;
  • оконечные (ОУ), коммутационные, а также устройства контроля шлейфа (УКШ).

Это определение для проводного шлейфа, а на рисунке 1 приведены структурные схемы наиболее распространенных вариантов.

Хочу обратить ваше внимание на неоднозначность толкования состояния сухих контактов (реле) в "классическом" техническом понимании и использовании для средств охранной сигнализации. Корректно будет называть контакты нормально замкнутыми (НЗ) для устройства имеющего их замкнутыми в нерабочем состоянии. Для нормально разомкнутых (НР), естественно все наоборот.

Для датчиков (извещателей) сигнализации почему-то НЗ считается замкнутое состояние при включенном извещателе. Действительно, при включении извещателя и его переходе в состояние "норма" контакты замыкаются, но состояние это рабочее, а значит их надо считать НР. Для того, чтобы избежать путаницы лучше смотреть каким образом формируется сигнал тревоги:

  • размыканием;
  • или замыканием контактов реле.

ВИДЫ И ТИПЫ ШЛЕЙФОВ СИГНАЛИЗАЦИИ

Классифицировать шлейфы можно по нескольким признакам, например:

  • способу подключения к прибору;
  • видам используемых извещателей.

В первом случае можно выделить два типа: радиальный (рис.2а) и кольцевой (рис.2б). Последний встречается достаточно редко и применяется, главным образом, в адресных системах пожарной сигнализации.

Если говорить про типы используемых датчиков, то можно говорить о пороговых шлейфах (рис.1а-б), резко изменяющих свои электрические параметры при переходе в режим "тревога" и адресных (рис.2в).

Про первые я уже говорил, а адресные шлейфы сигнализации давайте рассмотрим сейчас.

Называются они так благодаря используемым в них адресным датчикам сигнализации. В этом случае по одной двухпроводной линии передается информация о состоянии датчика (в цифровом виде) и подается напряжение питания. За счет уникального адреса каждый извещатель может быть однозначно идентифицирован системой.

В этом случае при подключении шлейфа соблюдение полярности, указанной на клеммах приемно-контрольного прибора и охранных датчиков обязательно. Кроме того, количество извещателей, подключаемых в адресный ШС ограничено и определяется техническими характеристиками прибора.

МОНТАЖ ОХРАННЫХ ШЛЕЙФОВ

Начнем с того, что шлейф сигнализации является слаботочной цепью и его монтаж должен осуществляться с учетом соответствующих норм и правил. Основным из них является обеспечение при параллельной прокладке с силовыми цепями расстояния между ними не менее 50 см. Пересечение этих цепей допускается только под прямым углом и т.п.

Поскольку при прокладке ШС необходимо обеспечить его защиту от случайных повреждений, то не допускается прокладывать провода без их крепления к несущим конструкциям. Наиболее типичный пример как не надо делать и как это все равно делается - свободное размещение (протаскивание) шлейфов в запотолочном пространстве, например, за потолками "Армстронг".

Руководящие документы вневедомственной охраны предписывают во избежании провисов соединительных линий систем охранной сигнализации крепление их с шагом, по моему, 50 см. к стенам и потолку. При открытой прокладке это становится неактуальным, поскольку существуют электромонтажные коробы, гофрошланги, которые:

  • во-первых, позволяют соблюсти правила прокладки шлейфов;
  • во-вторых, упрощают и ускоряют процесс монтажа.

Помимо требований к монтажу шлейфов сигнализации как слаботочных цепей существуют и правила обеспечения надежности их последующей эксплуатации и удобства обслуживания . Здесь могут присутствовать некоторые противоречия.

Например, с точки зрения обслуживания, доступ к ШС должен быть максимально удобным, а с точки зрения безопасности - нужно предотвратить возможность несанкционированного доступа к проводам и датчикам.

Причем, если в охраняемое время проведение каких либо манипуляций со шлейфом затруднительно, то в период, когда система сигнализации отключена отключить часть шлейфа или датчиков для знающего человека не составит труда. Причем после этого сигнализация будет работать как раньше, только часть или все помещение окажется без охраны.

Для решения этой проблемы могут проводится такие мероприятия как:

  • опломбирование (опечатывание) корпусов приборов, распределительных коробок, мест возможного вскрытия электромонтажных коробов;
  • скрытый монтаж датчиков сигнализации;
  • установка устройств контроля шлейфа.

Первые два пункта достаточно очевидны. Устройство же контроля ШС позволяет определить его обрыв. С одной стороны, оно может свидетельствовать о неисправности шлейфа, с другой - подскажет что часть шлейфа отключена. Подключение УКШ производится в самой дальней от приемно-контрольного прибора точке и его визуальный контроль должен производиться каждый раз при сдаче объекта под охрану.

Однако, сказанное относится к охранным системам, установленным в местах с пребыванием большого количества посторонних лиц: магазинах, офисах и пр. Риск подобных вмешательств в сигнализацию установленную на даче , в частном доме или квартире практически отсутствует.


* * *


© 2014-2019 г.г. Все права защищены.
Материалы сайта имеют исключительно ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

В.Н. Коренев,
к.т.н., руководитель направления разработок
и внедрения ООО «Системы Безопасности»,
г. Новосибирск

Пороговые шлейфы сигнализации, несмотря на свою низкую информативность и восприимчивость к помехам, продолжают применяться в различных системах тревожной сигнализации. Это обусловлено тем, что на рынке изделий тревожной сигнализации остается еще много неадресных извещателей и датчиков, которые имеют на своем выходе два стабильных состояния, соответствующие нормальному и тревожному. Они успешно конкурируют с адресными изделиями в силу их дешевизны и совместимости с различными приемно-контрольными приборами.

Несмотря на простоту схемотехники, пороговые шлейфы сигнализации можно сделать значительно информативнее, чем это реализовано в существующей аппаратуре. Это становится возможным с применением современной микропроцессорной техники, у которой возрастает разрядность АЦП, производительность обработки данных, объемы встроенной памяти и в тоже время уменьшается цена.

Однако повышение информативности связано с ростом контролируемых событий и сложностью алгоритмов перехода из одного состояния в другое. Описывать эти процессы становится все сложнее. Поэтому, при разработке таких изделий и их описании для пользователей, удобно использовать физические и программные модели шлейфа сигнализации.

Каждый пороговый шлейф сигнализации (ШС) прибора можно описать моделями с двух точек зрения:

С физической точки зрения – это электрическая цепь, соединяющая прибор с извещателями (датчиками) посредством проводных соединений (Рис.1). Каждый ШС имеет различные схемотехнические варианты , выбираемые разработчиком. В схеме включения изображаются контакты извещателя, резисторы и другие компоненты, обеспечиващие работу ШС.

Любой извещатель можно представить в виде электрического контакта, который при срабатывании скачком меняет свое сопротивление: становится либо замкнутом (сопротивление контакта равно нулю), либо разомкнутом (сопротивление контакта равно бесконечности).

Контакты извещателя подключается проводными соединительным линиями к клеммам приемно-контрольного прибора.

В приемно-контрольном приборе клеммы связаны с «Измерителем сопротивления», который измеряет электрическое сопротивление всей цепи ШС, а «Решающее устройство» по величине ее сопротивления принимает решение о том, сработал извещатель или нет.

Рис.1. Модель порогового шлейфа сигнализации

ШС подключается к измерителю сопротивления через клеммы, расположенные на плате прибора приемно-контрольного (ППК). Измеритель измеряет электрическое сопротивление всей цепи ШС, а решающее устройство по величине ее сопротивления принимает решение о том, сработал извещатель или нет.

С информационной точки зрения - это программный объект, состоящий из фиксированного набора событий. Событие в ШС может происходить в результате изменения сопротивления ШС, либо приходить извне, в виде управляющих команд. Набор событий определяется тактиками ШС . Каждая тактика ШС включает в себя:

  1. Тип шлейфа сигнализации (пожарный, охранный, аварийный и управления) и название;
  2. Электрическую схему включения;
  3. Шкалу диапазонов сопротивлений ШС, разделенную порогами;
  4. Привязки состояний к диапазонам сопротивлений ШС;
  5. Список событий ШС;
  6. Матрицу событий.

В качестве примера применения терминов, рассмотрим тактику пожарного шлейфа сигнализации «Однопороговая». В такой тактике предусматривается выдача сигнала «Пожар» при срабатывании любого одного или нескольких извещателей:

  1. Тип шлейфа сигнализации – пожарный, однопороговый.
  2. Электрическая схема включения - может быть выполнена в нескольких вариантах (рис.1.1.):
  1. с нормально-замкнутыми контактами извещателей (К1, К2). В этом случае контакты соединяются в линию шлейфа последовательно, а контрольные резисторы подключается параллельно контактам извещателей;
  2. с нормально-разомкнутыми контактами извещателе (К3, К4). В этом случае контакты извещателей соединяются параллельно линии шлейфа, а контрольные резисторы подключается последовательно контактам;

Рис.2. Электрические схемы включения контактов пожарных извещателей.

3) Шкала диапазонов сопротивлений, разделенная разработчиком порогами сопротивлений на 8 диапазонов: Д1 … Д8 (Рис.3).

Рис.3. Шкала диапазонов сопротивлений ШС

При замыкании и размыкании контактов извещателей в различных комбинациях, сопротивление шлейфа попадает в тот или иной диапазон.

  1. Привязки состояний к диапазонам сопротивлений ШС

Под состояниями шлейфа понимаются физические или логические свойства, характеризующие шлейф при изменении его сопротивления.

В «Однопороговом» ШПС разработчиком назначены следующие состояния:

  • Норма;
  • Пожар;
  • Обрыв.

Эти состояния привязываются к диапазонам:

  1. Список Событий ШС

Под событием понимается переход от одного состояния к другому. При этом учитываются как состояния самого шлейфа, так и другие состояния прибора, имеющие отношения к шлейфу.

В «Однопороговом» ШПС разработчиком назначены следующие события:

  • Сброс - событие в приборе в момент его перезагрузки (включении питания);
  • НеГотов - событие означающее, что после перезагрузки сопротивление шлейфа не находится в диапазоне «Норма»;
  • НаДежурстве – сопротивление шлейфа перешло в диапазон «Норма» [Д5] ;
  • Пожар – сопротивление шлейфа в любом из диапазонов «Пожар» [Д2] [Д3] [Д4] [Д6] [Д7] ;
  • Замыкание - сопротивление шлейфа находится в диапазоне «КЗ» [Д1] ;
  • Обрыв - сопротивление шлейфа находится в диапазоне «Обрыв» [Д8] ;
  1. Матрица Событий

Матрица событий определяет последовательность наступления событий при изменении состояний. При помощи матрицы удобно представлять алгоритмы работы шлейфа. Матрица представляет собой таблицу, в которой имеются следующие элементы:

Рис.4. Внешний вид матрицы событий.

Принцип применения матрицы для описания алгоритма работы шлейфа представлен на рис.5. В качестве примера, в крайне левом столбце, выберем текущим статус «НаДежурстве». Выделим зеленым фоном строку с событиями в поле событий, которые возможны при нахождении в этом статусе. Далее рассмотрим, какое событие произойдет при появлении нового состояния шлейфа «Пожар»:

Рис.5. Пример работы матрицы при наступлении состояния «Пожар»

В результате работы матрицы шлейф перешел в новый текущий статус «Пожар». Анализ влияния новых состояний шлейфа в статусе «Пожар» показывает, что никакое другое физическое изменение сопротивления шлейфа не изменит этого статуса. Для того чтобы вывести шлейф из статуса «Пожар» его необходимо перевести в новое состояние «Сброс». Такое состояние может прийти в шлейф извне: например, при нажатии кнопки сброса.

Таким образом, матричное представление существенно облегчает описание сложных алгоритмов работы пороговых шлейфов сигнализации и может быть использовано, как при их разработке, так и при описании работы изделия в руководстве пользователя . Очевидно, что матричное представление удобно и при описании алгоритмов других узлов изделий тревожной сигнализации.

Литература:

  1. Пинаев А., Никольский М. Оценка качества и надежности неадресных приборов пожарной сигнализации //Журнал "Алгоритм безопасности", № 6, 2007.
  2. Неплохов И.Г. Анализ параметров шлейфа двухпорогового ППКП// Алгоритмы безопасности №5, 2010г.
  3. Прибор контроля опасных ситуаций и оповещения "Хранитель-IT"//


Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение