Как подобрать котел для отопления частного дома по мощности. Как сделать самостоятельно расчет мощности котла отопления Расчет необходимой мощности котла отопления

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Автономное отопление для частного дома доступно, комфортно и разнообразно. Можно установить газовый котел и не зависеть от капризов природы или сбоев в системе централизованного отопления. Главное, правильно выбрать оборудование и рассчитать теплопроизводительность котла. Если мощность будет превышать потребности помещения в тепле, то деньги на установку агрегата будут выброшены на ветер. Чтобы система подачи тепла была комфортной и финансово выгодной, на стадии ее проектирования нужно сделать расчет мощности газового котла отопления.

Основные величины расчета мощности отопления

Самый простой способ получить данные теплопроизводительности котла по площади дома: берется 1 кВт мощности на каждые 10 кв. м . Однако эта формула имеет серьезные погрешности, ведь не учитываются современные строительные технологии, вид местности, климатические перепады температур, уровень теплоизоляции, использование окон с двойными стеклопакетами, и тому подобное.

Чтобы сделать боле точный расчет мощности отопления котла нужно учесть целый ряд важных факторов, влияющих на конечный результат:

  • габариты жилого помещения;
  • степень утепления дома;
  • наличие стеклопакетов;
  • теплоизоляция стен;
  • тип здания;
  • температура воздуха за окном в самое холодное время года;
  • вид разводки отопительного контура;
  • соотношение площади несущих конструкций и проемов;
  • теплопотери строения.

В домах с принудительной вентиляцией расчет теплопроизводительности котла должен учитывать количество энергии, необходимой для обогрева воздуха. Специалисты советуют делать зазор в 20% при использовании полученного результата тепловой мощности котла на случай непредвиденных ситуаций, сильного похолодания или снижения давления газа в системе.

При необоснованном повышении тепловой мощности можно снизить эффективность работы отопительного агрегата, повысить расходы на покупку элементов системы, привести к быстрому износу комплектующих. Вот почему так важно правильно сделать расчет мощности котла отопления и применить ее к указанному жилищу. Получить данные можно по простой формуле W=S*W уд, где S – площадь дома, W- заводская мощность котла, W уд – удельная мощность для расчетов в определенной климатической зоне, ее можно корректировать согласно особенностям региона пользователя. Результат нужно округлить к большому значению в условиях утечки тепла в доме.

Для тех, кто не хочет терять время на математические расчеты можно использовать калькулятор мощности газового котла онлайн. Просто вести индивидуальные данные особенностей помещения и получить готовый ответ.

Формула получения мощности отопительной системы

Калькулятор мощности котла отопления онлайн дает возможность за считаные секунды получить необходимый результат с учетом всех вышеперечисленных характеристик, которые влияют на конечных результат полученных данных. Чтобы правильно воспользоваться такой программой, необходимо ввести в таблицу подготовленные данные: вид остекления окна, уровень теплоизоляции стен, соотношение площадей пола и оконного проема, среднестатистическую температуру снаружи дома, число боковых стен, тип и площадь помещения. А после нажать кнопку «Рассчитать» и получить результат по теплопотерям и теплопроизводительности котла.

Время на чтение: 3 мин

Для обогрева жилых и офисных помещений используется оборудование с электрическим нагревателем воды. Для обеспечения баланса температуры и энергопотребления производится расчет электрокотла. При определении рабочих параметров учитывается не только площадь комнат, но и физические свойства материалов стен, пола и потолка помещения.

Что такое мощность электрокотла

Электрический котел представляет собой резервуар с теплообменником, через который прокачивается водопроводная вода или специальный теплоноситель, обладающий повышенными тепловыми характеристиками.

Котел подключается к бытовой сети переменного тока, нагревает он воду ТЭНами или электродами, изолированными от воды. В конструкции оборудования предусмотрен регулятор температуры.

Потребляемая мощность зависит от степени охлаждения теплоносителя при циркуляции по радиаторам отопления в здании. Часть энергии расходуется на тепловые потери в конструкции котла (нагрев стенок или защитных кожухов нагревательных элементов). На внешней части оборудования устанавливается информационная табличка, на которой указаны рабочие параметры изделия и потребляемая мощность.

Способы определения мощности электрокотла

Расчет рабочей мощности котла отопления выполняется для обеспечения сбалансированной системы отопления, способной поддерживать комфортную температуру в помещении при различных внешних условиях.

Оборудование должно обеспечивать равномерный прогрев комнат, изменение направления ветра не должно оказывать негативного воздействия на условия в помещениях. Перед выбором оборудования владельцу дома необходимо знать, как рассчитать мощность электрокотла с учетом особенностей помещения.

Для расчета применяются 2 основные методики:

  • по площади дома или комнат, подключенных к контуру отопления и котлу;
  • по объему помещений.

Вспомогательная методика определения мощности по контуру горячего водоснабжения предназначена для расчета дополнительной производительности. Полученный параметр суммируется с предварительно рассчитанным значением энергопотребления для отопления дома.

Затем проверяется способность электрической проводки, подведенной к зданию, выдержать максимальную нагрузку при работе нагревательных элементов котла.

Расчет котла по площади дома

Базовой методикой является определение мощности электрического котла отопления по площади помещений. Для определения значения используется базовое значение мощности, необходимой для обогрева комнаты площадью 10 м².

Коэффициент не зависит от климатической зоны, грубо считается, что для прогрева 10 м² необходимо затратить мощность 1 кВт. Коэффициент не учитывает теплопроводность материалов стен и высоту помещения, поэтому для уточнения расчета применяются дополнительные поправочные коэффициенты, определенные опытным путем.

Например, при высоте потолка более 2,7 м вводится дополнительный поправочный параметр, равный отношению фактической высоты к значению 2,7 м. Климатический коэффициент зависит от места расположения дома, значение находится в интервале от 0,7 для южных регионов до 2,0 - северных районов. Если нагревательный узел будет использоваться и для горячего водоснабжения, то к полученному показателю добавляется запас мощности 25-30%.

Существует другой способ подсчета, основанный на формуле S*K*100 , где параметр S является площадью помещений, а K представляет собой коэффициент тепловых потерь, изменяющийся в зависимости от минимального порога температуры воздуха. За базовое значение взята цифра 0,7, используемая в местности с минимальной температурой -10°С. При понижении климатической нормы на каждые 5°С коэффициент увеличивается на 0,2.

Метод не применяется при расчете котла для помещений со следующими особенностями конструкции:

  1. Наличие пластиковых или деревянных окон с дублированным стеклопакетом.
  2. Использование дополнительного теплоизоляционного слоя толщиной от 150 мм, расположенного внутри или снаружи кирпичной стены (толщиной 2 размера кирпича).
  3. Сохранение неотапливаемого чердачного помещения и отсутствие теплоизоляционного материала на отделке крыши.
  4. Увеличение высоты жилых комнат до 2,7 м и более.

Расчет мощности котла по объему

Расчет мощности электрического котла отопления по объему жилых помещений базируется на коэффициенте тепловых потерь, который составляет:

  1. От 0,6 до 0,9 - для строений из кирпича с улучшенной теплоизоляцией. В доме применяются пластиковые 2-камерные окна, может использоваться крыша из теплоизолирующего материала.
  2. От 1 до 1,9 - для зданий, построенных из кирпича (двойная кладка), со стандартной кровлей и деревянными окнами.
  3. От 2 до 2,9 - для помещений с ухудшенной теплоизоляцией (например, со стенами толщиной в 1 кирпич).
  4. От 3 до 4 - для зданий, построенных из древесины или выполненных из гофрированного металлического листа со слоем теплоизолирующего материала.

При расчете используется формула вида V*K*T/860 , где учитывается объем дома V, поправочный коэффициент K и разница температуру внутри дома и снаружи помещения. Для расчета берется минимальная температура воздуха, характерная для местоположения дома.

Полученное значение является избыточным, но в случае длительных морозов удастся поддерживать температуру в доме в заданных параметрах. Приведенная методика расчета мощности электрокотла для отопления дома не учитывает подачи дополнительной теплой жидкости для мытья посуды или душевой кабины.

Для жилых помещений в панельных или кирпичных домах расчет ведется по нормативам СНиП. Правила закладывают необходимую мощность для нагрева 1 м³ воздуха в пределах 41 и 34 Вт (для дома из панелей и силикатного кирпича, соответственно).

Затем владелец помещения проводит замеры высоты и площади, к полученному значению добавляется страховой запас 10% (на случай понижения температуры воздуха в зимнее время). При установке энергосберегающих окон допускается устанавливать котел с мощностью менее расчетной.

Для угловых помещений учитывается количество стен, контактирующих с улицей. Если на внешнюю сторону дома выходит только 1 стена, то требуется применять коэффициент 1,1. Каждая дополнительная стена увеличивает значение корректирующего параметра на 0,1. Для снижения тепловых потерь рекомендуется проанализировать помещение специальным прибором, а затем смонтировать слой изолятора.

Расчет для ГВС

Расчет электрокотла для отопления частного дома, одновременно используемого для горячего водоснабжения, учитывает следующие факторы:

  1. Количество и температура теплой воды, необходимой для обеспечения жизнедеятельности проживающих в помещении людей.
  2. На основании первого параметра определяется объем горячей воды +90°C, которая затем разбавляется потоком холодной жидкости для получения теплой.
  3. На основании полученного значения осуществляется расчет электрического котла. При определении параметров не учитывается понижение температуры водопроводной воды в зимнее время.

Например, жилой дом ежесуточно потребляет 200 л теплой воды (Vг) прогретой до +40°С (Tг). Предполагается получение необходимой температуры путем смешивания горячей и холодной воды. Владелец планирует приобрести котел, прогревающий жидкость до +95°С (Tк), в линии холодного водоснабжения подается вода с температурой +10°С (Tх).

Объем горячей воды определяется по формуле Vг*(Tг-Tх)/(Tк-Tх)=200*(40-10)/(95-10) . Расчет показывает, что для обеспечения подачи горячей воды в сутки требуется прогреть 71 л жидкости до температуры +95°С.

Дальнейший расчет ведется на основании коэффициента удельной теплоемкости воды (4,218 кДж на каждый кг при прогреве на 1°C), веса жидкости и разницы температур. Полученное значение затем переводится по таблицам в киловатты, рекомендуется округлять параметр в сторону увеличения.

Для описанной выше ситуации требуется дополнительная мощность около 5 кВт. Полученное значение подразумевает прогрев воды за 1 час, если жидкость используется равномерно в течение дня, то допускается снизить дополнительные энергозатраты в 2 раза.

Перед проектированием отопительной системы, монтажом обогревательного оборудования важно подобрать газовый котел, способный генерировать необходимое количество тепла для помещения. Поэтому важно выбрать устройство такой мощности, чтобы его производительность была максимально высокой, а ресурс – большим.

Мы расскажем о том, как рассчитать мощность газового котла с высокой точностью и учетом определенных параметров. В представленной нами статье подробно описаны все виды потерь тепла через проемы и строительные конструкции, приведены формулы для их вычисления. С особенностями производства расчетов знакомит конкретный пример.

Правильный расчет мощности газового котла позволит не только сэкономить на расходных материалах, но и повысит КПД прибора. Оборудование, теплоотдача которого превышает реальные потребности в тепле, будет работать неэффективно, когда как недостаточно мощное устройство не сможет обогреть помещение должным образом.

Существует современное автоматизированное оборудование, которое самостоятельно регулирует подачу газа, что избавляет от нецелесообразных расходов. Но если такой котел выполняет свою работу на пределе возможностей, то уменьшаются сроки его эксплуатации.

В результате снижается КПД оборудования, быстрее изнашиваются детали, образовывается конденсат. Поэтому возникает необходимость расчетов оптимальной мощности.

Галерея изображений

В любой системе отопления, использующей жидкий теплоноситель, ее «сердцем» является котел. Именно здесь происходит преобразование энергетического потенциала топлива (твёрдого, газообразного, жидкого) или электричества в тепло, которое передаётся теплоносителю, и уже им разносится по всем отапливаемым помещениям дома или квартиры. Естественно, возможности любого котла не беспредельны, то есть ограничены его техническо-эксплуатационными характеристиками, указанными в паспорте изделия.

Одной из ключевых характеристик является тепловая мощность агрегата. Проще говоря, он должен обладать способностью выработать в единицу времени такое количество тепла, которого было бы достаточно для полноценного обогрева всех помещений дома или квартиры. Подбор подходящей модели «на глаз» или по каким-то уж чересчур обобщенным понятиям может привести к ошибке в ту или иную сторону. Поэтому в данной публикации постараемся предложить читателю хоть и не профессиональный, но все же обладающий достаточно высокой степенью точности алгоритм, как рассчитать мощность котла для отопления дома.

Банальный вопрос – для чего знать необходимую мощность котла

Несмотря на то что вопрос действительно кажется риторическим, все же видится необходимость дать парочку пояснений. Дело в том, что некоторые хозяева домов или квартир все же умудряются допускать ошибки, впадая в ту или иную крайность. То есть приобретая оборудование или заведомо недостаточной тепловой производительности, в надежде сэкономить, или сильно завышенной, чтобы, по их мнению, гарантировано, с большим запасом обеспечить себя теплом в любой ситуации.

И то, и другое – совершенно неправильно, и негативно сказывается как на обеспечении комфортных условий проживания, так и на долговечности самого оборудования.

  • Ну, с недостаточностью теплотворной способности все более-менее ясно. При наступлении зимних холодов котел станет работать на полную свою мощность, и не факт, что при этом в помещениях будет комфортный микроклимат. Значит, придется «нагонять тепло» с помощью электрический обогревательных приборов, что повлечет лишние немалые расходы. А сам котел, функционирующий на пределе своих возможностей, вряд ли протянет долго. В любом случае уже через год-другой владельцы жилья однозначно осознают необходимость замены агрегата на более мощный. Так или иначе, цена ошибки получается весьма впечатляющей.

  • Ну а почему бы не приобрести котел с большим запасом, чем же это может помешать? Да, безусловно, качественный обогрев помещений будет обеспечен. Но теперь перечислим «минусы» такого подхода:

Во-первых, котел большей мощности сам по себе может стоить значительно дороже, и назвать такую покупку рациональной – сложно.

Во-вторых, с возрастанием мощности практически всегда увеличиваются габариты и масса агрегата. Это ненужные сложности при установке, «украденное» пространство, что бывает особо важно, если котел планируется разместить, например, на кухне или в другом помещении жилой зоны дома.

В-третьих, можно столкнуться с неэкономичностью работы системы отопления – часть затраченных энергоресурсов будет расходоваться, по сути, впустую.

В-четвертых, избыточная мощность – это регулярные длительные отключения котла, которые, кроме того, сопровождаются остыванием дымохода и, соответственно, обильным образованием конденсата.

В-пятых, если мощное оборудование никогда не нагружается должным образом, на пользу ему это не идет. Подобное утверждение может показаться парадоксальным, но так оно и есть – износ становится выше, длительность безаварийной эксплуатации существенно снижается.

Цены на популярные отопительные котлы

Избыток мощности котла будет уместен лишь в том случае, если к нему планируется подключить систему подогрева воды для хозяйственных нужд – бойлер косвенного нагрева. Ну или тогда, когда в перспективе предполагается расширение системы отопления. Например, в планах хозяев – возведение жилой пристройки к дому.

Способы проведения расчета необходимой мощности котла

По правде говоря, проведение теплотехнических расчетов всегда лучше доверять специалистам – слишком уж много нюансов приходится принимать во внимание. Но, понятно, что такие услуги оказываются не бесплатно, поэтому многие хозяева предпочитают взять на себя ответственность за выбор параметров котельного оборудования.

Давайте посмотрим, какие способы расчета тепловой мощности чаще всего предлагаются на просторах интернета. Но для начала уточним вопрос, что конкретно должно влиять на это параметр. Так проще будет разобраться в достоинствах и недостатках каждого из предлагаемых методов расчета.

Какие принципы являются ключевыми при проведении расчетов

Итак, перед системой отопления стоят две главных задачи. Сразу же уточним, что между ними нет четкого разделения – напротив, наблюдается очень тесная взаимосвязь.

  • Первая – это создание и поддержание в помещениях комфортной для проживания температуры. Причем этот уровень нагрева должен распространяться на весь объем помещения. Безусловно, в силу физических законов, температурная градация по высоте все равно неизбежна, но она не должна сказываться на ощущении комфортности пребывания в комнате. Получается, что должна быть в состоянии прогреть определённый объем воздуха.

Степень комфортности температуры, безусловно – величина субъективная, то есть разные люди ее могут оценивать по-своему. Но все же принято считать, что этот показатель находится в области +20 ÷ 22 °С. Обычно именно такой температурой и оперируют при проведении теплотехнических расчетов.

Об этом же говорят и нормативы, установленные действующими ГОСТ, СНиП и СанПиН. Вот, например, в таблице ниже приведены требования ГОСТ 30494-96:

Тип помещения Уровень температуры воздуха, °С
оптимальный допустимый
Жилые помещения 20÷22 18÷24
Жилые помещения для регионов с минимальными зимними температурами от - 31 °С и ниже 21÷23 20÷24
Кухня 19÷21 18÷26
Туалет 19÷21 18÷26
Ванная, совмещенный санузел 24÷26 18÷26
Кабинет, помещения для отдыха и учебных занятий 20÷22 18÷24
Коридор 18÷20 16÷22
Вестибюль, лестничная клетка 16÷18 14÷20
Кладовые 16÷18 12÷22
Жилые помещения (остальные - не нормируются) 22÷25 20÷28
  • Вторая задача – это постоянная компенсация возможных тепловых потерь. Создать «идеальный» дом, в которой полностью бы отсутствовали утечки тепла - проблема из проблем, практически нерешаемая. Можно лишь свести их к предельному минимуму. А путями утечки в той или иной мере становятся практически все элементы конструкции здания.

Элемент конструкции здания Примерная доля от общих тепловых потерь
Фундамент, цоколь, полы первого этада (по грунту или над неотапливаемым повалом) от 5 до 10%
Стыки строительных конструкций от 5 до 10%
Участки прохода инженерных коммуникаций через сроительные консрукции (трубы канализации, водопровода, газоснабжения, электрические или коммункационные кабели и т.п.) до 5%
Внешние стены, в зависимости от уровня термоизоляции от 20 до 30%
Окна и двери на улицу около 20÷25%, из них порядка половины - из-за недостаточной герметизации коробок, плохой подгонки рам или полотен
Крыша до 20%
Дымоход и вентиляция до 25÷30%

Для чего давались все эти довольно пространные объяснения? А лишь для того, чтобы у читателя возникла полная ясность, что при расчетах волей-неволей необходимо учитывать оба направления. То есть и «геометрию» отапливаемых помещений дома, и примерный уровень тепловых потерь из них. А количество этих утечек тепла, в свою очередь, зависит еще от целого ряда факторов. Это и разница температур на улице и в доме, и качество термоизоляции, и особенности всего дома в целом и расположения каждого из его помещений, и другие критерии оценки.

Возможно, вас заинтересует информация о том, какие подходят

Теперь, вооружившись этими предварительными познаниями, перейдем к рассмотрению различных методов расчета необходимой тепловой мощности.

Расчет мощности по площади отапливаемых помещений

Предлагается исходить их условного соотношения, что для качественного обогрева одного квадратного метра площади помещения необходим расходовать 100 Вт тепловой энергии. Таким образом, поможет высчитать, какая :

Q = Sобщ / 10

Q - требуемая тепловая мощность системы отопления, выраженная в киловаттах.

Sобщ - суммарная площадь отапливаемых помещений дома, квадратных метров.

Делаются, правда, оговорки:

  • Первая - высота потолка помещения в среднем должна составлять 2.7 метра, допускается диапазон от 2,5 до 3 метров.
  • Вторая - можно сделать поправку на регион проживания, то есть принять не жесткую норму 100 Вт/м², а «плавающую»:

То есть формула при этом примет несколько иной вид:

Q = Sобщ × Qуд / 1000

Qуд - взятое из показанной выше таблицы значение удельной тепловой мощности на квадратный метр площади.

  • Третья - расчет справедлив для домов или квартир со средней степенью утепления ограждающих конструкций.

Тем не менее, несмотря на упомянутые оговорки, такой расчет никак нельзя назвать точным. Согласитесь, что он в большей мере зиждется на «геометрии» дома и его помещений. А вот теплопотери практически в расчет не принимаются, если не считать довольно-таки «размытых» диапазонов удельной тепловой мощности по регионам (которые тоже с весьма туманными границами), и ремарки, что стены должны иметь среднюю степень утепления.

Но что бы то ни было, такой метод все же пользуется популярностью, именно за свою простоту.

Понятно, что к полученному расчетному значению необходимо добавить эксплуатационный резерв мощности котла. Чрезмерно завышать его не следует – специалисты советуют останавливаться на диапазоне от 10 до 20%. Это, кстати, касается всех методов расчета мощности отопительного оборудования, о которых речь пойдет ниже.

Расчет необходимой тепловой мощности по объему помещений

По большому счету, этот способ расчета во многом повторяет предыдущей. Правда, исходной величиной здесь уже выступает не площадь, а объем – по сути, та же площадь, но умноженная еще на высоту потолков.

А нормы удельной тепловой мощности здесь принимаются такие:

  • для кирпичных домов – 34 Вт/м³;
  • для панельных домов – 41 Вт/м³.

Даже исходя из предлагаемых значений (из их формулировки) становится понятно, что эти нормы были установлены для многоквартирных домов, и применяются в основном для расчета потребности в тепловой энергии для помещений, подключенных к центральной системе отделения или к автономному котельному пункту.

Совершенно очевидно, что во главу угла вновь ставится «геометрия». А вся система учета тепловых потерь сводится лишь к различиям в теплопроводности кирпичных и панельных стен.

Одним словом, точностью такой подход к расчетам тепловой мощности тоже не отличается.

Алгоритм расчета с учетом особенностей дома и его отдельных помещений

Описание методики расчета

Итак, предложенные выше методы дают лишь обще представление о необходимом количестве тепловой энергии для отопления дома или квартиры. Уязвимое место у них общее – практически полное игнорирование возможных тепловых потерь, которые рекомендуется считать «среднестатистическими».

Но вполне возможно провести и более точные вычисления. В этом поможет предлагаемый алгоритм расчета, который воплощен, кроме того, в форме онлайн-калькулятора, который будет предложен ниже. Просто перед началом вычислений имеет смысл пошагово рассмотреть сам принцип их проведения.

Прежде всего – важное замечание. Предлагаемая методика предполагает оценку не всего дома или квартиры по общей площади или объему, а каждого отапливаемого помещения в отдельности. Согласитесь, что комнаты равной площади, но различающиеся, скажем, количеством внешних стен, потребуют и разное количество тепла. Нельзя поставить знак равенства между помещениями, имеющими существенную разницу в количестве и площади окон. И таких критериев оценки каждой из комнат – немало.

Так что будет правильнее рассчитать необходимую мощность для каждого из помещений по отдельности. Ну а потом простое суммирование полученных значений приведет нас к искомому показателю общей тепловой мощности для всей системы отопления. То есть, по сути, для ее «сердца» — котла.

Еще одно замечание. Предлагаемый алгоритм не претендует на «научность», то есть он напрямую не основывается на каких-то конкретных формулах, установленных СНиП или иными руководящими документами. Однако, он проверен практикой применения и показывает результаты с высокой степенью точности. Различия с итогами профессионально проведенных теплотехнических расчетов – минимальны, и никак не сказываются на правильном выборе оборудования по его номинальной тепловой мощности.

«Архитектура» расчета такова - берется базовое, уде упомянутое выше значение удельной тепловой мощности, равное 100 Вт/м², а затем вводится целая череда поправочных коэффициентов, в той или иной степени отражающих количество теплопотерь конкретного помещения.

Если это выразить математической формулой, то получится примерно так:

= 0.1 × Sк × k1 × k2 × k3 × k4 × k5 × k6 × k7 × k8 × k9× k10 × k11

- искомая тепловая мощность, необходимая для полноценного отопления конкретной комнаты

0.1 - перевод 100 Вт в 0.1 кВт, просто для удобства получения результата именно в киловаттах.

- площадь помещения.

k1 ÷ k11 - поправочные коэффициенты для корректировки результата с учетом особенностей помещения.

С определением площади помещения, надо полагать, проблем быть не должно. Так что сразу перейдем к подробному рассмотрению поправочных коэффициентов.

  • k1 — коэффициент, учитывающий высоту потолков в комнате.

Понятно, что высота потолков напрямую влияет на объем воздуха, который должна прогреть система отопления. Для расчета предлагается принять следующие значения поправочного коэффициента:

  • k2 — коэффициент, учитывающий количество стен помещения, контактирующих с улицей.

Чем больше площадь контакта с внешней средой, тем выше уровень тепловых потерь. Каждый знает, что в угловой комнате всегда бывает значительно прохладнее, нежели в имеющей всего одну внешнюю стену. А некоторые помещения дома или квартиры и вовсе могут быть внутренними, не имеющими контакта с улицей.

По уму, конечно, следует принимать не только количество внешних стен, но и их площадь. Но у нас расчет все же упрощенный, поэтому ограничимся только введением поправочного коэффициента.

Коэффициенты для различных случаев приведены в таблице ниже:

Случай, когда все четыре стены внешние – не рассматриваем. Это уже не жилой дом, а просто какой-то сарай.

  • k3 — коэффициент, принимающий в расчет положение внешних стен относительно сторон света.

Даже зимой не стоит сбрасывать со счетов возможное воздействие энергии солнечных лучей. В ясный день они проникают через окна в помещения, включаясь тем самым в общую подачу тепла. Кроме того, и стены получают заряд солнечной энергии, что ведет к уменьшению общего количества теплопотерь через них. Но все это справедливо только лишь для тех стен, которые «видят» Солнце. На северной и северо-восточной стороне дома такого влияния не оказывается, на что тоже можно сделать определённую поправку.

Значения корректировочного коэффициента на стороны света – в таблице ниже:

  • k4 — коэффициент, учитывающий направление зимних ветров.

Возможно, эта поправка и не является обязательной, но для домов, расположенных на открытой местности, имеет смысл принять в расчет и ее.

Возможно вас заинтересует информация о том, что собой представляют

Практически в любой местности наблюдается преобладание зимних ветров – это еще называется «розой ветров». Такая схема в обязательном порядке есть у местных метеорологов – она составляется по результатам многолетних наблюдений за погодой. Довольно часто и сами местные жители прекрасно осведомлены, какие ветра чаще всего их беспокоят зимой.

И если стена помещения размещена с наветренной стороны, и не защищена какими-то естественными или искусственными преградами от ветра, то она будет выстуживаться значительно сильнее. То есть и тепловые потери помещения возрастают. В меньшей степени это будет выражено у стены, расположенной параллельно направлению ветра, в минимальной – находящейся с подветренной стороны.

Если нет желания «заморачиваться» с этим фактором, или же отсутствует достоверная информация о зимней розе ветров, то можно оставить коэффициент, равный единице. Или же, наоборот, приять его максимальным, на всякий случай, то есть для наиболее неблагоприятных условий.

Значения этого поправочного коэффициента – в таблице:

  • k5 — коэффициент, учитывающий уровень зимних температур в регионе проживания.

Если проводить теплотехнические расчеты по всем правилам, то оценку тепловых потерь проводят с учетом разницы температур в помещении и на улице. Понятно, что чем холоднее по климатическим условиям регион, тем больше тепла требуется подавать в системе отопления.

В нашем алгоритме это тоже будет в определенной степени учтено, но с допустимым упрощением. В зависимости от уровня минимальных зимних температур, приходящихся на самую холодную декаду, выбирается поправочный коэффициент k5.

Здесь будет уместным сделать одно замечание. Расчет будет корректным, если принимаются во внимание температуры, которые для данного региона считаются нормой. Нет никакой необходимости вспоминать аномальные морозы, которые случились, скажем, несколько лет назад (и оттого, кстати, и запомнились). То есть должна выбираться самая низкая, но нормальная для данной местности температура.

  • k6 – коэффициент, принимающий во внимание качество термоизоляции стен.

Вполне понятно, что чем эффективнее система утепления стен, тем меньше будет уровень тепловых потерь. В идеале, к которому следует стремиться, термоизоляция вообще должна быть полноценной, проведенной на основании выполненных теплотехнических расчетов, с учетом климатический условий региона и особенностей конструкции дома.

При расчете требуемой тепловой мощности системы отопления следует учесть и имеющуюся термоизоляцию стен. Предлагается такая градация поправочных коэффициентов:

Недостаточная степень термоизоляции или вообще полное ее отсутствие, по идее, вовсе не должны наблюдаться в жилом доме. В противном случае система отопления будет очень затратной, да еще и без гарантии создания действительно комфортных условий проживания.

Возможно, вас заинтересует информация о том, в системе отопления

Если читатель желает самостоятельно оценить уровень термоизоляции своего жилья, он может воспользоваться информацией и калькулятором, которые размещены в последнем разделе настоящей публикации.

  • k7 и k8– коэффициенты, учитывающие теплопотери через пол и потолок.

Следующие два коэффициента схожи – их введением в расчет принимается во внимание примерный уровень тепловых потерь через полы и потолки помещений. Подробно здесь расписывать незачем – и возможные варианты, и соответствующие им значения этих коэффициентов показаны в таблицах:

Для начала – коэффициент k7, корректирующий результат в зависимости от особенностей пола:

Теперь – коэффициент k8, вносящий поправку на соседство сверху:

  • k9 – коэффициент, учитывающий качество окон в помещении.

Здесь тоже все просто – чем качественнее окна, тем меньше теплопотери через них. Старые деревянные рамы, как правило, не отличаются хорошими термоизоляционными характеристиками. Лучше с этим дело обстоит у современных оконных систем, оснащенных стеклопакетами. Но и у них может быть определённая градация – по количество камер в стеклопакете и по другим особенностям конструкции.

Для нашего упрощенного расчета можно применить следующие значения коэффициента k9:

  • k10 – коэффициент, вносящий поправку на площадь остекления комнаты.

Качество окон еще полностью не раскрывает всех объемов возможных теплопотерь через них. Очень большое значение имеет площадь остекления. Согласитесь, сложно сравнивать маленькое окошко и огромное панорамное окно чуть не во всю стену.

Чтобы внести корректировку и на этот параметр, для начала следует рассчитать так называемый коэффициент остекления помещения. Это несложно – просто находится отношение площади остекления к общей площади комнаты.

kw = sw / S

kw - коэффициент остекления помещения;

sw - суммарная площадь остекленных поверхностей, м²;

S - площадь помещения, м².

Измерить и просуммировать площадь окон сможет каждый. А затем несложно простым делением найти и искомый коэффициент остекления. А он, в свою очередь, дает возможность зайти в таблицу и определить значение поправочного коэффициента k10:

Значение коэффициента остекления kw Значение коэффициента k10
- до 0.1 0.8
- от 0.11 до 0.2 0.9
- от 0.21 до 0.3 1.0
- от 0.31 до 0.4 1.1
- от 0.41 до 0.5 1.2
- свыше 0.51 1.3
  • k11 – коэффициент, принимающий во внимание наличие дверей на улицу.

Последний из рассматриваемых коэффициентов. В помещении может быть дверь, ведущая непосредственно на улицу, на холодный балкон, в неотапливаемый коридор или подъезд и т.п. Мало того что дверь сама по себе часто является весьма серьезным «мостиком холода» - при ее регулярном открывании каждый раз в помещение будет проникать изрядный объем холодного воздуха. Стало быть, и на это фактор следует сделать поправку: подобные теплопотери, безусловно, требуют дополнительной компенсации.

Значения коэффициента k11 приведены в таблице:

Этот коэффициент стоит принимать во внимание, если дверями в зимнее время регулярно пользуются.

Возможно, вас заинтересует информация о том, что собой представляет

* * * * * * *

Итак, все поправочные коэффициенты рассмотрены. Как видите – ничего сверхсложного здесь нет, и можно смело переходить к расчетам.

Еще один совет перед началом вычислений. Все будет намного проще, если предварительно составить таблицу, в первом столбце которой последовательно указать все отпаиваемые помещения дома или квартиры. Далее, по столбцам, разместить данные, которые требуются для расчетов. Например, во втором столбце – площадь помещения, в третьем - высота потолков, в четвертом – ориентация по сторонам света – и так далее. Такую табличку составить несложно, имея перед собой план своих жилых владений. Понятно, что в последний столбец будут заноситься рассчитанные значения требуемой тепловой мощности по каждому помещению.

Таблицу можно составить в офисном приложении, или даже просто расчертить на листе бумаги. И не спешите с ней расставаться после проведения расчётов – полученные показатели тепловой мощности еще пригодятся, например, при приобретении радиаторов отопления или же электрических нагревательных приборов, используемых в качестве резервного источника тепла.

Чтобы предельно упростить читателю задачу проведения таких вычислений, ниже размещен специальный онлайн-калькулятор. С ним, при предварительно собранных в таблицу исходных данных, расчет займёт буквально считаные минуты.

Калькулятор расчета необходимой тепловой мощности для помещений дома или квартиры.

Расчет проводится для каждого помещения отдельно.
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках.

Нажмите «РАССЧИТАТЬ ПОТРЕБНУЮ ТЕПЛОВУЮ МОЩНОСТЬ»

Площадь помещения, м²

100 Вт на кв. м

Высота потолка в помещении

Количество внешних стен

Внешние стены смотрят на:

Положение внешней стены относительно зимней «розы ветров»

Уровень отрицательных температур воздуха в регионе в самую холодную неделю года

Оценка степени термоизоляции стен

Как уже говорилось, к полученному итоговому значению следует прибавить запас в 10 ÷ 20 процентов. Например, рассчитанная мощность составляет 9,6 кВт. Если прибавить 10%, то это получится 10,56 кВт. При прибавлении 20% — 11,52 кВт. В идеале, номинальная тепловая мощность приобретаемого котла должна как раз и расположиться в диапазоне от 10,56 до 11.52 кВт. Если такой модели нет, то приобретается ближайшая по показателю мощности в сторону его увеличения. Например, конкретно для этого примера отлично подойдут с мощностью 11.6 кВт – они представлены в нескольких линейках моделей различных производителей.

Возможно, вас заинтересует информация о том, что собой представляет для твердотопливного котла

Как правильнее оценить степень термоизоляции стен помещения?

Как и обещалось выше, в этом разделе статьи поможет читателю с оценкой уровня термоизоляции стен его жилых владений. Для этого тоже придется провести один упрощенный теплотехнический расчет.

Принцип проведения расчета

Согласно требованиям СНиП, сопротивление теплопередаче (которое еще иначе называют термическим сопротивлением) строительных конструкций жилых домов должно быть не ниже нормативного показателя. А эти нормированные показатели установлены для регионов страны, в соответствии с особенностями их климатических условий.

Где найти эти значения? Во-первых, они есть в специальных таблицах-приложениях к СНиП. Во-вторых, информацию о них можно получить в любой местной строительной или проектной архитектурной компании. Но вполне можно воспользоваться и предлагаемой картой-схемой, охватывающей всю территории Российской Федерации.

Нас в данном случае интересуют стены, поэтому и берем со схемы значение термического сопротивления именно «для стен» - они указаны фиолетовыми цифрами.

Теперь давайте взглянем, из чего складывается это термическое сопротивление, и чему оно равно с точки зрения физики.

Итак, сопротивление теплопередаче какого-то абстрактного однородного слоя х равно:

Rх = hх / λх

- сопротивление теплопередаче, измеряется в м²×°К/Вт;

- толщина слоя, выраженная в метрах;

λх - коэффициент теплопроводности материала, из которого изготовлен этот слой, Вт/м×°К. Это – табличная величина, и для любого из строительных или термоизоляционных материалов ее несложно отыскать на справочных ресурсах интернета.

Обычные строительные материалы, применяемые для возведения стен, чаще всего даже при их большой (в пределах разумного, конечно) толщине не дотягивают до нормативных показателей сопротивления теплопередаче. Иными словами, стену нельзя назвать полноценно термоизолированной. Вот для этого как раз и применяется утеплитель – создается дополнительный слой, который «восполняет дефицит», необходимый для достижения нормированных показателей. А за счет того, что коэффициенты теплопроводности у качественных утеплительных материалов низкие, можно избежать необходимости возводить очень большие по толщине конструкции.

Возможно, вас заинтересует информация о том, что такое

Взглянем на упрощённую схему утепленной стены:

1 - собственно, сама стена, имеющая определенную толщину и возведённая из того или иного материала. В большинстве случаев «по умолчанию» она сама не в состоянии обеспечить нормированное термическое сопротивление.

2 - слой утеплительного материала, коэффициент теплопроводности и толщина которого должны обеспечить «покрытие недостачи» до нормированного показателя R. Сразу оговоримся – расположение термоизоляции показано снаружи, но она может размещаться и с внутренней стороны стены, и даже располагаться между двумя слоями несущей конструкции (например, выложенной из кирпича по принципу «колодезной кладки»).

3 - внешняя фасадная отделка.

4 - внутренняя отделка.

Слои отделки часто не оказывают сколь-нибудь значимого влияния на общий показатель термического сопротивления. Хотя, при выполнении профессиональных расчетов их тоже берут во внимание. Кроме того, и отделка может быть разной – например, теплая штукатурка или пробковые плиты очень даже способны усилить общую термоизоляцию стен. Так что для «чистоты эксперимента» вполне можно учесть и оба этих слоя.

Но есть и важное замечание – никогда не принимается в расчет слой фасадной отделки, если между ним и стеной или утеплителем располагается вентилируемый зазор. А это часто практикуется в системах вентилируемого фасада. В такой конструкции внешняя отделка никакого влияния на общий уровень термоизоляции не окажет.

Итак, если нам известны материал и толщина самой капитальной стены, материал и толщина слоев утеплителя и отделки, то по указанной выше формуле несложно посчитать их суммарное термическое сопротивление и сопоставить его с нормированным показателем. Если оно не меньше – нет вопросов, стена имеет полноценную термоизоляцию. Если недостаточно – можно просчитать, какой слой и какого утеплительного материала эту недостачу способен восполнить.

Возможно, вас заинтересует информация о том, как выполняется

А чтобы сделать задачу еще проще – ниже размещен онлайн-калькулятор, который выполнит этот расчет быстро и точно.

Сразу несколько пояснений по работе с ним:

  • Для начала по карте схеме находят нормированное значение сопротивления теплопередаче. В данном случае, как уже говорилось, нас интересуют стены.

(Впрочем, калькулятор обладает универсальностью. И, позволяет оценивать термоизоляцию и перекрытий, и кровельных покрытий. Так что, при необходимости можно воспользоваться – добавьте страницу в закладки).

  • В следующей группе полей указывается толщина и материал основной несущей конструкции – стены. Толщина стены, если она обустроена по принципу «колодезной кладки» с утеплением внутри, указывается суммарная.
  • Если стена имеет термоизоляционный слой (независимо от места его расположения), то указывается тип утеплительного материала и толщина. Если утепления нет, то оставляется толщина по умолчанию равная «0» - переходят к следующей группе полей.
  • А следующая группа «посвящена» наружной отделке стены – также указывается материал и толщина слоя. Если отделки нет, или отсутствует необходимость ее принимать в расчет – все оставляется по умолчанию и переходят дальше.
  • Аналогичным образом поступают и со внутренней отделкой стены.
  • Наконец, останется только выбрать утеплительный материал, который планируется использовать для дополнительной термоизоляции. Возможные варианты указаны в выпадающем списке.

Нулевое или отрицательное значение сразу говорит о том, что термоизоляция стен соответствует нормативам, и дополнительного утепления попросту не требуется.

Близкое к нулю положительное значение, скажем, до 10÷15 мм, тоже не дает особых поводов беспокоиться, и степень термоизоляции можно считать высокой.

Недостаточность до 70÷80 мм уже должна заставить хозяев задуматься. Хотя такой утепление можно отнести к средней эффективности, и учесть его при расчетах тепловой мощности котла, лучше все же спланировать проведение работ по усилению термоизоляции. Какая нужна толщина дополнительного слоя – уже показано. А выполнение этих работ сразу даст ощутимый эффект – и повышением комфортности микроклимата в помещениях, и меньшим потреблением энергоресурсов.

Ну а если расчет показывает недостачу выше 80÷100 мм, утепления практически нет или оно чрезвычайно неэффективное. Тут двух мнений и быть не может – перспектива проведения утеплительных работ выходит на первый план. И это будет намного выгоднее, чем приобретать котел повышенной мощности, часть из которой будет попросту расходоваться буквально на «прогрев улицы». Естественно, в сопровождении разорительных счетов за зря потраченные энергоносители.

Чтобы обеспечить комфортную температуру на протяжении всей зимы котел отопления должен выдавать такое количество тепловой энергии, которое необходимо для восполнения всех потерь тепла здания/помещения. Плюс к этому необходимо иметь еще и небольшой запас мощности на случай аномальных холодов или расширения площадей. О том, как рассчитать требуемую мощность и поговорим в этой статье.

Для определения производительности отопительного оборудования нужно в первую очередь определить потери тепла здания/помещения. Такой расчет называется теплотехническим. Это один из самых сложных расчетов в отрасли, так как требуется учесть много составляющих.

Безусловно, на величину теплопотерь, влияют материалы, которые использовались при возведении дома. Потому учитываются стройматериалы, из которых изготовлен фундамент, стены, пол, потолок, перекрытия, чердак, кровля, оконные и дверные проемы. Принимается во внимание тип разводки системы и наличие теплых полов. В некоторых случаях считают даже наличие бытовой техники, которая во время работы выделяет тепло. Но совсем не всегда требуется такая точность. Есть методики, которые позволяют быстро прикинуть требуемую производительность отопительного котла, не погружаясь в дебри теплотехники.

Расчет мощности котла отопления по площади

Для приблизительной оценки требуемой производительности теплового агрегата достаточно площади помещений. В самом простом варианте для средней полосы России считают, что 1кВт мощности может обогреть 10м 2 площади. Если у вас дом площадью 160м2, мощность котла для его обогрева — 16кВт.

Эти расчеты приблизительны, ведь не учитывается ни высота потолков, ни климат. Для этого существуют выведенные опытным путем коэффициенты, при помощи которых вносятся соответствующие корректировки.

Указанная норма — 1кВт на 10м 2 подходит для потолков 2,5-2,7м. Если у вас потолки в помещении выше, нужно вычислять коэффициенты и пересчитывать. Для этого высоту ваших помещений делим на стандартную 2,7м и получаем поправочный коэффициент.

Расчет мощности котла отопления по площади — самый простой способ

Например, высота потолков 3,2м. Считаем коэффициент: 3,2м/2,7м=1,18 округляем, получаем 1,2. Выходит, что для обогрева помещения 160м 2 с высотой потолков 3,2м требуется отопительный котел мощностью 16кВт*1,2=19,2кВт. Округляют обычно в большую сторону, так что 20кВт.

Чтобы учесть климатические особенности есть уже готовые коэффициенты. Для России они такие:

  • 1,5-2,0 для северных регионов;
  • 1,2-1,5 для подмосковных регионов;
  • 1,0-1,2 для средней полосы;
  • 0,7-0,9 для южных регионов.

Если дом находится в средней полосе, чуть южнее Москвы, применяют коэффициент 1,2 (20кВт*1,2=24кВт), если на юге России в Краснодарском крае, например, коэффициент 0,8, то есть мощность требуется меньше (20кВт*0,8=16кВт).

Расчет отопления и подбор котла — важный этап. Неправильно найдете мощность и можете получить такой результат…

Это основные факторы, которые учитывать необходимо. Но найденные значения справедливы, если котел будет работать только на отопление. Если требуется еще и греть воду, нужно добавить 20-25% от рассчитанной цифры. Потом требуется добавить «запас» на пиковые зимние температуры. Это еще 10%. Итого получаем:

  • Для отопления дома и ГВС в средней полосе 24кВт+20%=28,8кВт. Потом запас на холода — 28,8кВт+10%=31,68кВт. Округляем и получаем 32кВт. Если сравнивать с первоначальной цифрой в 16кВт, разница получается в два раза.
  • Дом в Краснодарском крае. Добавляем мощность для нагрева горячей воды: 16кВт+20%=19,2кВт. Теперь «запас» на холода 19,2+10%=21,12кВт. Округляем: 22кВт. Разница не столь разительная, но тоже достаточно приличная.

Из примеров видно, что учитывать хотя-бы эти значения нужно обязательно. Но очевидно, что в расчете мощности котла для дома и квартиры, разница быть должна. Можно пойти тем же путем и использовать коэффициенты для каждого фактора. Но есть более простой способ, который позволяет внести коррекции за один раз.

При расчете котла отопления для дома применяется коэффициент 1,5. Он учитывает наличие теплопотерь через кровлю, пол, фундамент. Справедлив при средней (нормальной) степени утепления стен — кладка в два кирпича или аналогичные по характеристикам стройматериалы.

Для квартир применяются другие коэффициенты. Если сверху находится отапливаемое помещение (другая квартира) коэффициент 0,7, если отапливаемый чердак — 0,9, если неотапливаемый чердак — 1,0. Нужно найденную по описанной выше методике мощность котла умножить на один из этих коэффициентов и получите достаточно достоверное значение.

Чтобы продемонстрировать ход вычислений, произведем расчет мощности газового котла отопления для квартиры 65м 2 с потолками 3м, которая расположена в средней полосе России.

  1. Определяем требуемую мощность по площади: 65м 2 /10м 2 =6,5кВт.
  2. Вносим поправку на регион: 6,5кВт*1,2=7,8кВт.
  3. Котел будет греть воду, потому добавляем 25% (любим погорячее) 7,8кВт*1,25=9,75кВт.
  4. Добавляем 10% на холода: 7,95кВт*1,1=10,725кВт.

Теперь результат округляем и получаем: 11Квт.

Указанный алгоритм справедлив для подбора отопительных котлов на любом виде топлива. Расчет мощности электрического котла отопления ничем не будет отличаться от расчета котла твердотопливного, газового или на жидком топливе. Основное — производительность и эффективность котла, а теплопотери от типа котла не изменяются. Весь вопрос в том, как потратить меньше энергоносителей. А это уже область утепления.

Мощность котла для квартир

При расчете отопительного оборудования для квартир можно пользоваться нормами СНиПа. Использование этих норм еще называют расчетом мощности котла по объему. СНиП задает требуемое количество тепла на обогрев одного кубического метра воздуха в типовых постройках:

  • на обогрев 1м 3 в панельном доме требуется 41Вт;
  • в кирпичном доме на м 3 идет 34Вт.

Зная площадь квартиры и высоту потолков, найдете объем, затем, умножив на норму в узнаете мощность котла.

Для примера посчитаем требуемую мощность котла для помещений в кирпичном доме площадью 74м 2 с потолками 2,7м.

  1. Вычисляем объем: 74м 2 *2,7м=199,8м 3
  2. Считаем по норме сколько нужно будет тепла: 199,8*34Вт=6793Вт. Округляем и переводим в киловатты, получаем 7кВт. Это и будет необходимая мощность, которую должен выдавать тепловой агрегат.

Несложно посчитать мощность для такого же помещения, но уже в панельном доме: 199,8*41Вт=8191Вт. В принципе, в теплотехнике округляют всегда в большую сторону, но можно принять во внимание остекление ваших окон. Если на окнах энергосберегающие стеклопакеты, можно округлять в меньшую сторону. Считаем, что стеклопакеты хорошие и получаем 8кВт.

Выбор мощности котла зависит от типа здания — для обогрева кирпичных требуется меньше тепла, чем панельных

Далее нужно, так же как и в расчете для дома, учесть регион и необходимость подготовки горячей воды. Актуальна и поправка на аномальные холода. Но в квартирах большую роль играет расположение комнат и этажность. Принимать во внимание нужно стены, выходящие на улицу:

  • Одна наружная стена — 1,1
  • Две — 1,2
  • Три — 1,3

После того, как учтете все коэффициенты, получите достаточно точное значение, на которое можно опираться при выборе техники для отопления. Если хотите получить точный теплотехнический расчет, его нужно заказывать в профильной организации.

Есть еще один метод: определить реальные потери при помощи тепловизора — современного прибора, который покажет к тому же места, через которые утечки тепла идут более интенсивно. Заодно сможете устранить и эти проблемы и улучшить теплоизоляцию. И третий вариант — воспользоваться программой-калькулятором, который посчитает все вместо вас. Нужно только выбрать и/или проставить требуемые данные. На выходе получите расчетную мощность котла. Правда, тут есть определенная доля риска: непонятно насколько верные алгоритмы заложены в основу такой программы. Так что все-таки придется еще хотя-бы приблизительно просчитать для сравнения результатов.

Надеемся, у вас теперь есть представление о том, как рассчитать мощность котла. И вас не путает, что это , а не твердотопливный, или наоборот.

Возможно, вас заинтересуют статьи о том, и . Для того чтобы иметь общее представление об ошибках, которые часто встречаются при планировании системы отопления смотрите видео.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии Как приготовить творожный десерт с желатином Как приготовить творожный десерт с желатином