Постулаты специальной теории относительности. Специальная теория относительности

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Определение 1

СТО (специальная теория относительности) – это современная физическая теория пространства и времени.

Теория относительности совместно с такой наукой как квантовая механика, является теоретической базой для развития современной физики и техники. СТО также носит название релятивистской теории; явления же, специфику которых рассматривает эта теория, называют релятивистскими эффектами. Создателем теории относительности является Альберт Эйнштейн.

Классическая механика Ньютона дает отличное описание движения макротел, движение которых происходит на малых скоростях (v < < c) . Нерелятивистская физика принимала как очевидность существование единого мирового времени t , одинакового для всех систем отсчета. Основой классической механики является механический принцип относительности.

Определение 2

Механический принцип относительности (называемый также принципом относительности Галилея): законы динамики едины для всех инерциальных систем отсчета.

Иносказательно можно также назвать законы динамики инвариантными или неизменными относительно преобразований Галилея, позволяющих рассчитать координаты совершающего движение тела в одной инерциальной системе (K) при заданных координатах этого тела в другой инерциальной системе (K ") . В частности, когда система K " совершает движение при скорости v вдоль положительного направления оси x системы K (рис. 4 . 1 . 1), преобразования Галилея выглядят следующим образом:

x = x " + v t , y = y " , z = z " , t = t " .

При этом изначально существует предположение о совпадении осей координат обеих систем в начальный момент.

Рисунок 4 . 1 . 1 . Две инерциальные системы отсчета K и K " .

Следствием преобразований Галилея является классический закон преобразования скоростей при переходе из одной системы отсчета в другую:

v x = v x " + v , v y = v y " , v z = v z "

Тело во всех инерциальных системах при этом имеет одинаковые ускорения:

a x = a x " , a y = a y " , a z = a z " или a → = a " →

Из сказанного можно заключить, что уравнение движения, являющееся одной из основ классической механики (второй закон Ньютона), m a → = F → сохраняет свой вид при переходе из одной инерциальной системы в другую.

К концу XIX века уже имелся некий багаж опытных фактов, явно противоречащих законам классической механики. Вызвало большое затруднение применение механики Ньютона для объяснения распространения света. В определенный момент сформировалось предположение, что свет распространяется в особой среде – эфире; это предположение опровергли многие эксперименты. В 1881 году физик из Америки А. Майкельсон (в 1887 году к нему присоединился физик Э.Морли) начал предпринимать попытки обнаружить движение Земли относительно эфира («эфирный ветер») при помощи интерференционного опыта. Упрощенно схема опыта Майкельсона–Морли отображена на рис. 4 . 1 . 2 .

Рисунок 4 . 1 . 2 . Упрощенная схема интерференционного опыта Майкельсона–Морли. v → – орбитальная скорость Земли.

В ходе опыта одно из плеч интерферометра Майкельсона было установлено параллельно направлению орбитальной скорости Земли (v = 30 к м / с) , после чего прибор поворачивался на 90 ° . Второе плечо при этом получало ориентацию по направлению орбитальной скорости. Произведенные подсчеты давали понять, что в случае существования неподвижного эфира при повороте прибора интерференционные полосы сместились бы на расстояние, пропорциональное v c 2 .

Опыт Майкельсона–Морли, в последующем повторяемый множество раз, давал однозначный отрицательный результат. В результате анализа результатов опыта Майкельсона–Морли, а также некоторых других экспериментов стало возможным утверждать ошибочность представления об эфире как среде, в которой распространяются световые волны. Т.е., для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не влияет на оптические явления на Земле.

Значимое влияние на развитие представлений о пространстве и времени оказала теория Максвелла. В начале XX века данная теория являлась общепризнанной. Теория Максвелла предсказывала электромагнитные волны, которые распространялись с конечной скоростью, и эта гипотеза получила практическое применение в 1895 году, когда А. С. Попов изобрел радио. Но также теория Максвелла гласит, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета обладает одним и тем же значением, равным скорости света в вакууме.

Данное утверждение означает, что уравнения, которые описывают распространение электромагнитных волн, являются неинвариантными относительно преобразований Галилея. Когда электромагнитная волна (в частности, свет) получает распространение в системе отсчета K " (рис. 4 . 1 . 1) в положительном направлении оси x " , в системе K свет должен в соответствии с кинематикой Галилея распространяться со скоростью c + v , а не c .

Таким образом, на границе XIX и XX веков в развитии физики возник серьезный кризис. Выход нашел А.Эйнштейн, отказавшись, как это часто случается в случае величайших открытий, от классического видения. В данном случае, речь шла о классических представлениях о пространстве и времени. Важнейшим шагом здесь стал иной взгляд на понятие абсолютного времени, которое использовалось в классической физике. Привычные представления, казавшиеся логичными и очевидными, по факту показали свою несостоятельность. Множество понятий и величин, в нерелятивистской физике считавшихся абсолютными или не имеющими зависимости от системы отсчета, в теории относительности оказались переведенными в разряд относительных.

Основой специальной теории относительности являются принципы или постулаты, которые Эйнштейн сформулировал в 1905 году.

Определение 3

Принципы СТО :

  1. Принцип относительности: все законы природы инвариантны относительно перехода от одной инерциальной системы отсчета к другой. Данный принцип означает единство формы физических законов (не только механических) во всех инерциальных системах.
    Т.е. принцип относительности классической механики является обобщенным для всех процессов природы, в частности, электромагнитных. Такой обобщенный принцип носит название принципа относительности Эйнштейна.
  2. Принцип постоянства скорости света: скорость света в вакууме не имеет зависимости от того, с какой скоростью движется источник света или наблюдатель, и является одинаковой во всех инерциальных системах отсчета. Скорость света в теории относительности находится на особом положении. Скорость света есть предельная скорость, с которой передаются взаимодействия и сигналы из одной точки пространства в другую.

Указанные принципы необходимо расценивать в качестве обобщения всей совокупности экспериментальных фактов. Выводы и следствия из теории, основанной на данных принципах, получили подтверждение в ходе огромного количества опытных проверок. Специальная теория относительности дала возможность найти ответы на все вопросы «доэйнштейновской» физики и дать объяснение противоречивым результатам уже имеющихся тогда опытов в области электродинамики и оптики. Впоследствии теория относительности получила подкрепление в виде экспериментальных данных, которые были получены в процессе изучения движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

Постулаты теории относительности явно противоречат классическим представлениям. Проведем такой мысленный эксперимент: в момент времени t = 0 , в который существует совпадение координатных осей двух инерциальных систем K и K " , в общем начале координат произошла кратковременная вспышка света. За время t системы будут смещены относительно друг друга на расстояние v t , а сферический волновой фронт в каждой системе будет обладать радиусом c t (рис. 4 . 1 . 3), поскольку системы являются равноправными, и в каждой из них скорость света равна c .

Рисунок 4 . 1 . 3 . Кажущееся противоречие постулатов СТО.

С позиции наблюдателя в системе K центр сферы расположен в точке O , а с позиции наблюдателя в системе K " центр размещается в O " . Таким образом, получается, что центр сферического фронта одномоментно расположен в двух разных точках!

Причиной подобного недоразумения является не противоречие между двумя постулатами теории относительности, а допущение факта, что положение фронтов сферических волн для обеих систем имеет отношение к одному и тому же моменту времени. Такое допущение содержится в формулах преобразования Галилея, в соответствии с которыми время в обеих системах течет одинаково: t = t " . Таким образом, принципы Эйнштейна противоречат не друг другу, а формулам преобразования Галилея, и в таком случае на смену галилеевых преобразований теория относительности записала иные формулы преобразования при переходе из одной инерциальной системы в другую, получившие название преобразований Лоренца. Преобразования Лоренца при скоростях движения, приближенных к скорости света, дают возможность дать объяснение всем релятивистским эффектам, а при малых скоростях (υ < < c) переходят в формулы преобразования Галилея. Итак, новая теория (специальная теория относительности или СТО) не отвергает прежнюю классическую механику Ньютона, а лишь уточняет пределы ее применения. Эта взаимосвязь между прежней и новой, более общей теорией, частью которой является прежняя в качестве предельного случая, получила название принципа соответствия.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Специальная теория относительности, созданная Эйнштейном в 1905 году, по своему основному содержанию может быть названа физическим учением о пространстве и времени. Физическим потому, что свойства пространства и

времени в этой теории рассматриваются в теснейшей связи с законами

совершающихся в них физических явлений. Термин «специальная»

подчеркивает то обстоятельство, что эта теория рассматривает явления только в инерциальных системах отсчета.

Прежде чем перейти к ее изложению, сформулируем основные принципы

ньютоновской механики:

1) Пространство имеет 3 измерения; справедлива евклидова геометрия.

2) Время существует независимо от пространства в том смысле, в котором

независимы три пространственных измерения.

3) Промежутки времени и размеры тел не зависят от системы отсчета

4) Признается справедливость закона инерции Ньютона - Галилея (I закон

5) При переходе от одной ИСО к другой справедливы преобразования Галилея для координат, скоростей и времени.

6) Выполняется принцип относительности Галилея: все инерциальные системы отсчета эквивалентны друг другу в отношении механических явлений.

7) Соблюдается принцип дальнодействия: взаимодействия тел распространяются мгновенно, то есть с бесконечной скоростью.

Эти представления ньютоновской механики вполне соответствовали всей

совокупности экспериментальных данных, имевшихся в то время.

Однако обнаружилось, что в ряде случаев механика Ньютона не работала. Первым подвергся проверке закон сложения скоростей. Принцип относительности Галилея утверждал, что все ИСО эквивалентны по своим механическим свойствам. Но их, наверное, можно отличить по электромагнитным или каким-либо другим свойствам. Например,

можно заняться экспериментами по распространению света. В соответствии с

существовавшей в то время волновой теории существовала некая абсолютная

система отсчета(так называемый «эфир»), в которой скорость света была равна

с. Во всех остальных системах скорость света должна была подчиняться

закону с’ = c - V. Это предположение взялись проверить сначала Майкельсон, а затем и Морли. Целью эксперимента являлось обнаружение « истинного »

движения Земли относительно эфира. Было использовано движение Земли по

орбите со скоростью 30 км в секунду.

время прохождения расстояния SAS

В качестве исходных позиций специальной теории относительности Эйнштейн

принял два постулата, или принципа, в пользу которых говорит весь

экспериментальный материал (и в первую очередь опыт Майкельсона):

1) принцип относительности,

2)независимость скорости света от скорости источника.

Первый постулат представляет собой обобщение принципа относительности

Галилея на любые физические процессы:

все физические явления протекают одинаковым образом во всех инерциальных

системах отсчета; все законы природы и уравнения, их описывающие,

инвариантны, т. е. не меняются, при переходе от одной инерциальной

системы отсчета к другой.

Другими словами, все инерциальные системы отсчета эквивалентны

(неразличимы) по своим , физическим свойствам ; никаким опытом нельзя в

принципе выделить ни одну из них как предпочтительную.

Второй постулат утверждает, что скорость света в вакууме не зависит от

движения источника света и одинакова во всех направлениях .

Это значит, что, скорость света в вакууме одинакова во всех ИСО . Таким

образом, скорость света занимает особое положение в природе. В отличие от

всех других скоростей, меняющихся при переходе от одной системы отсчета к

другой, скорость света в пустоте является инвариантной величиной. Как мы

увидим, наличие такой скорости существенно изменяет представления о

пространстве и времени.

Из постулатов Эйнштейна следует также, что скорость света в вакууме является

предельной : никакой сигнал, никакое воздействие одного тела на другое не

могут распространяться со скоростью, превышающей скорость света в вакууме.

Именно предельный характер этой скорости и объясняет одинаковость

скорости света во всех системах отсчета. В самом деле, согласно принципу

относительности, законы природы должны быть одинаковы во всех

инерциальных системах отсчета. Тот факт, что скорость любого сигнала не

может превышать предельное значение, есть также закон природы.

Следовательно, значение предельной скорости-скорости света в вакууме-

Должно быть одинаково во всех инерциальных системах отсчета: в противном

случае эти системы можно было бы отличить друг от друга.__

Преобразования Лоренца

Пусть нам даны две системы отсчета k и k`. В момент t = О обе эти системы координат совпадают. Пусть система k` (назовем ее подвижной) движется так, что ось х` скользит по оси х, ось у` параллельна оси у, скорость v - скорость движения этой системы координат (рис. 109).

Точка М имеет координаты в системе k - х, у, z, a в системе k` - х`, у`, z`.

Преобразования Галилея в классической механике имеют вид:

Преобразования координат, удовлетворяющие постулатам специальной теории относительности, называются преобразованиями Лоренца.

Впервые они (в несколько иной форме) были предложены Лоренцем для объяснения отрицательного эксперимента Майкельсона-Морли и для придания уравнениям Максвелла одинакового вида во всех инерциальных системах отсчета.

Эйнштейн вывел их независимо на основе своей теории относительности. Подчеркнем, что изменилась (по сравнению с преобразованием Галилея) не только формула преобразования координаты х, но и формула преобразований времени t. Из последней формулы непосредственно видно, как переплетены пространственная и временная координаты.

Следствия из преобразований Лоренца

    Длина движущегося стержня.

Предположим, что стержень расположен вдоль оси х` в системе k` и движется вместе с системой k` со скоростью v .

Разность между координатами конца и начала отрезка в системе отсчета, в которой он неподвижен, называется собственной длиной отрезка . В нашем случае l 0 = х 2 ` - х 1 `, где х 2 ` - координата конца отрезка в системе k` и х/ - координата начала. Относительно системы k стержень движется. Длиной движущегося стержня принимают разность между координатами конца и начала стержня в один и тот же момент времени по часам системы k.

где l - длина движущегося стержня, l 0 - собственная длина стержня. Длина движущегося стержня меньше собственной длины.

    Темп хода движущихся часов.

Пусть в точке х 0 ` движущейся системы координат k` происходит последовательно два события в моменты t/ и t 2 . В неподвижной системе координат k эти события происходят в разных точках в моменты t 1 и t 2 . Интервал времени между этими событиями в движущейся системе координат равен дельта t` = t 2 ` - t 1 `, а в покоящейся дельта t = t 2 - t 1 .

На основании преобразования Лоренца получим:

Интервал времени дельта t` между событиями, измеренный движущимися часами, меньше, чем интервал времени дельта t между теми же событиями, измеренный покоящимися часами. Это означает, что темп хода движущихся часов замедлен относительно неподвижных.

Время, которое измеряется по часам, связанным с движущейся точкой, называется собственным временем этой точки.

    Относительность одновременности.

Из преобразований Лоренца следует, что если в системе k в точке с координатами x 1 и х 2 происходили два события одновременно (t 1 = t 2 = t 0), то в системе k` интервал

понятие одновременности - понятие относительное. События, одновременные в одной системе координат, оказались неодновременными в другой.

    Относительность одновременности и причинность.

Из относительности одновременности следует, что последовательность одних и тех же событий в различных системах координат различна.

Не может ли случиться так, что в одной системе координат причина предшествует следствию, а в другой, наоборот, следствие предшествует причине?

Чтобы причинно-следственная связь между событиями имела объективный характер и не зависела от системы координат, в которой она рассматривается, необходимо, чтобы никакие материальные воздействия, осуществляющие физическую связь событий, происходящих в различных точках, не могли передаваться со скоростью, большей скорости света.

Таким образом, передача физического влияния из одной точки в другую не может происходить со скоростью, большей скорости света. При этом условии причинная связь событий носит абсолютный характер: не существует системы координат, в которой причина и следствие меняются местами.

Интервал между двумя событиями

Все физические законы механики должны быть инвариантными относительно преобразований Лоренца. Условия инвариантности в случае четырехмерного пространства Минковского представляют непосредственный аналог условий инвариантности при повороте системы координат в реальном трехмерном пространстве. Например, интервал в СТО является инвариантом относительно преобразований Лоренца. Рассмотрим это подробнее.

Любые события характеризуются точкой, где оно произошло, имеющей координаты х, у, z и временем t, т.е. каждое событие происходит в четырехмерном пространстве-времени с координатами х, у, z, t.

Если первое событие имеет координаты х 1 , у 1 , z 1 , t 1 , другое с координатами х 2 , у 2 , z 2 , t 2 , то величину

Найдем величину интервала между двумя событиями в любой ИСО.

где t=t 2 - t 1 , x=x 2 - x 1 , у=у 2 - у 1 , z=z 2 - z 1 .

Интервал между событиями в движущейся ИСО К *

(S *) 2 =c 2 (t *) 2 - (x *) 2 - (у *) 2 - (z *) 2 .

Согласно преобразованиям Лоренца , имеем для ИСО К *

; у * =у; z * =z; .

С учетом этого

(S *) 2 =c 2 t 2 - x 2 - у 2 - z 2 =S 2 .

Следовательно, интервал между двумя событиями является инвариантом к переходу от одной ИСО к другой.

РЕЛЯТИВИСТСКИЙ ИМПУЛЬС

Уравнения классической механики инвариантны по отношению к преобразованиям Галилея, по отношению же к преобразованиям Лоренца они оказываются неинвариантными. Из теории относительности следует, что уравнение динамики, инвариантное по отношению к преобразованиям Лоренца, имеет вид:

где - инвариантная, т.е. одинаковая во всех системах отсчета величина называемая массой покоя частицы, v- скорость частицы,- сила действующая на частицу. Сопоставим с классическим уравнением

Мы приходим к выводу, что релятивистский импульс частицы равен

Энергия в релятивистской динамике.

Для энергии частицы в теории относительности получается выражение:

Эта величина носит название энергии покоя частицы. Kинетическая энергия, очевидно, равна

Из последнего выражения вытекает, что энергия и масса тела всегда пропорциональны друг другу. Всякое изменение энергии тела сопровождается изменением массы тела

и, наоборот, всякое изменение массы сопровождается изменениемэнергии. Это утверждение носит название закона взаимосвязи или закона пропорциональности массы и энергии.

Масса и Энергия

Если на тело с массой покоя m 0 действует постоянная результирующая сила, то скорость тела возрастает. Но скорость тела не может возрастать неограниченно, так как существует предельная скорость с. С другой стороны, с увеличением скорости происходит увеличение массы тела. Следовательно, производимая над телом работа приводит не только к увеличению скорости, но и массы тела.

Из закона сохранения импульса Эйнштейн вывел следующую формулу зависимости массы от скорости:

где m 0 - масса тела в той системе отсчета, в которой тело неподвижно (масса покоя), m - масса тела в той системе отсчета, относительно которой тело движется со скоростью v .

Импульс тела в специальной теории относительности будет иметь следующий вид:

Второй закон Ньютона будет справедлив в релятивистской области, если его записать в виде:

где р - р елятивистский импульс.

Обычно работа, производимая над телом, увеличивает его энергию. Этот аспект теории относительности привел к идее о том, что масса есть форма энергии, - решающему моменту специальной теории относительности Эйнштейна.

По закону сохранения энергии работа, совершаемая над частицей, равна ее кинетической энергии (КЭ) в конечном состоянии, так как в начальном состоянии частица покоилась:

Величину mс 2 называют полной энергией (предполагаем, что частица не обладает потенциальной энергией).

Исходя из представления о массе как форме энергии Эйнштейн назвал m 0 с 2 энергией покоя (или собственной энергией) тела. Так мы получим знаменитую формулу Эйнштейна

Е = mс 2 .

Если частица покоится, то ее полная энергия равна Е = m 0 с 2 (энергия покоя). Если же частица находится в движении и ее скорость соизмерима со скоростью света, то ее кинетическая энергия будет равна: Е к = mс 2 - m 0 с 2 .

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

После того как математики создали правила в пространстве понятий и чисел, ученые были уверены, что им остается лишь ставить эксперименты и с помощью логических построений объяснять устройство всего сущего. В разумных пределах законы математики работают. Но эксперименты, выходящие за рамки ежедневных понятий и представлений, требуют новых принципов и законов.

Идея

В середине XIX века повсеместно распространилась удобная идея о всеобщем эфире, которая устраивала большинство ученых и исследователей. Таинственный эфир стал наиболее распространенной моделью, объясняющей известные на то время физические процессы. Но к математическому описанию гипотезы эфира постепенно добавлялись множество необъяснимых фактов, которые объяснялись различными дополнительными условиями и допущениями. Постепенно стройная теория эфира обросла «костылями», их становилось слишком много. Требовались новые идеи для объяснения устройства нашего мира. Постулаты специальной теории относительности соответствовали всем требованиям - они были кратки, непротиворечивы и полностью подтверждались экспериментами.

Опыты Майкельсона

Последней каплей, которая «сломала спину» гипотезе эфира, стали исследования в области электродинамики и объясняющие их уравнения Максвелла. При приведении результатов опытов к математическому решению, Максвелл использовал теорию эфира.

В своем эксперименте исследователи заставили два луча, идущих в разных направлениях, излучаться синхронно. При условии что свет движется в «эфире», один луч света должен был двигаться медленнее другого. Несмотря на многочисленные повторения опыта, результата был один и тот же - свет двигался с постоянной скоростью.

Иначе нельзя было объяснить тот факт, что, согласно расчетам, скорость света в гипотетическом эфире» всегда была одинаковой, независимо от того, с какой скоростью двигался наблюдатель. Но чтобы объяснить результаты исследований, требовалось, чтобы система отсчета была « идеальной». А это противоречило постулату Галилея об инвариантности всех инерциальных систем отсчета.

Новая теория

В начале ХХ века целая плеяда ученых приступила к разработке теории, которая примиряла бы результаты исследований электромагнитных колебаний с принципами классической механики.

При разработке новой теории было учтено, что:

Движение с около световыми скоростями меняет формулу второго закона Ньютона, связывающего ускорение с силой и массой;

Уравнение для импульса тела должно иметь другую, более сложную формулу;

Скорость света оставалась постоянной, вне зависимости от выбранной системы отсчета.

Усилия А. Пуанкаре, Г. Лоренца и А. Эйнштейна привели к созданию специальной теории относительности, которая согласовала все недостатки и объяснила существующие наблюдения.

Основные понятия

Основы специальной теории относительности заключаются в определениях, которыми оперирует данная теория

1. Система отсчета - материальное тело, которое можно принять за начало системы отсчета и координату времени, в течение которого наблюдатель будет следить за движением объектов.

2. Инерциальная система отсчета - та, которая движется равномерно и прямолинейно.

3. Событие. Специальная и общая теория относительности рассматривают событие как локализованный в пространстве физический процесс с ограниченной длительностью. Координаты объекта могут быть заданы в трехмерном пространстве как (x, y, z) и периодом времени t. Стандартным примером такого процесса является световая вспышка.

Специальная теория относительности рассматривает инерциальные системы отсчета, в которых первая система движется возле второй с постоянной скоростью. В этом случае поиск соотношений координат объекта в этих инерциальных системах является приоритетным для СТО и входит в ее основные задачи. Специальная теория относительности сумела решить этот вопрос при помощи формул Лоренца.

Постулаты СТО

При разработке теории Эйнштейн отмел все многочисленные допущения, которые были необходимыми для поддержания теории эфира. Простота и математическая доказуемость - вот два кита, на которых держалась его специальная теория относительности. Кратко ее предпосылки можно свести к двум постулатам, которые были необходимы для создания новых законов:

  1. Все физические законы в инерциальных системах выполняются одинаково.
  2. Скорость света в вакууме постоянна, она не зависит от расположения наблюдателя и его скорости.

Эти постулаты специальной теории относительности сделали бесполезной теории о мифическом эфире. Взамен этой субстанции была предложена концепция четырехмерного пространства, связавшего воедино время и пространство. При указании местонахождении тела в пространстве нужно учитывать и четвертую координату - время. Данное представление кажется довольно искусственным, но следует учесть, что подтверждение данной точки зрения лежит в пределах скоростей, соизмеримых со скоростью света, а в повседневном мире законы классической физики выполняют свою работу на «отлично». Принцип относительности Галилея выполняется для всех инерциальных систем отсчета: если в СО k соблюдается правило F = ma, то оно будет правильным и в другой системе отсчета k’. В классической физике время - величина определенная, и его значение неизменно и не зависит от движения инерциальной СО.

Преобразования в СТО

Коротко координаты точки и время можно обозначить так:

x" = x - vt и t" = t.

такую формулу дает классическая физика. Специальная теория относительности предлагает эту формулу в более усложненном виде.

В этом уравнении величины (x,x’ y,y’ z,z’ t,t’) обозначают координаты объекта и течение времени в наблюдаемых системах отсчета, v -скорость объекта, а с - скорость света в вакууме.

Скорости объектов в таком случае должны соответствовать не стандартной Галилеевской

формуле v= s/t, а такому преобразованию Лоренца:

Как можно видеть, при пренебрежимо малой скорости тела эти уравнения вырождаются во всем известные уравнения классической физики. Если предпочесть другую крайность и задать скорость объекта равной скорости света, то в этом предельном случае все равно получается c. Отсюда специальная теория относительности делает вывод, что ни одно тело в наблюдаемом мире не может двигаться ос скоростью, превышающей скорость света.

Следствия СТО

При дальнейшем рассмотрении преобразований Лоренца становится ясно, что со стандартными объектами начинают происходить нестандартные вещи. Следствия специальной теории относительности - это изменение длины объекта и течения времени. Если длина отрезка в одной системе отсчета будет равна l, то наблюдения из другой ОС, дадут такое значение:

Таким образом, выясняется, что наблюдатель из второй системы отсчета увидит отрезок более коротким, чем первый.

Удивительные превращение коснулись и такой величины, как время. Уравнение для координаты t будет выглядеть таким образом:

Как можно видеть, время во второй системе отсчета течет медленнее, чем в первой. Естественно, оба этих уравнения дадут результаты только при скоростях, сравнимых со скоростью света.

Первым вывел формулу замедления времени Эйштейн. Он же и предолжил разгадать так называемый «парадокс близнецов». По условию этой задачи имеются братья-близнецы, один из которых остался на Земле, а второй улетел на ракете в космос. Согласно формуле, написанной выше, братья будут стареть по разному, так как время для путешествующего брата течет медленнее. Этот парадокс имеет решение, если учесть, что брат-домосед все время находился в инерциальной системе отсчета, а близнец-непоседа путешествовал в неинерциальной СО, которая двигалась с ускорением.

Изменение массы

Еще одним следствием СТО является изменение массы наблюдаемого объекта в различных СО. Поскольку все физические законы одинаково действуют во всех инерциальных системах отсчета, фундаментальные законы сохранения - импульса, энергии и момента импульса - должны соблюдаться. Но поскольку скорость для наблюдателя в неподвижной СО больше, чем в движущейся, то, согласно закону сохранения импулься, масса объекта должна измениться на величину:

В первой системе отсчета объект должен иметь большую массу тела, чем во второй.

Приняв скорость тела равной скорости света, получаем неожиданный вывод - масса объекта достигает бесконечной величины. Разумеется, любое материальное тело в обозримой вселенной имеет свою конечную массу. Уравнение лишь говорит о том, что никакой физический объект не может двигаться ос скоростью света.

Соотношение массы и энергии

При скорости объекта, много меньшей скорости света, уравнение для массы можно привести к виду:

Выражение m 0 c представляет собой некое свойство объекта, которое зависит только от его массы. Эта величина получила название энергии покоя. Сумма энергий покоя и движения может быть записана так:

mc 2 = m 0 c + E кин.

Отсюда вытекает, что полная энергия объекта может быть выражена формулой:

Простота и элегантность формулы энергии тела придали законченность,

где Е - полная энергия тела.

Простота и элегантность знаменитой формулы Эйнштейна придали законченность специальной теории относительности, сделав ее внутренне непротиворечивой и не требующей многих допущений. Таким образом, исследователи объяснили многие противоречия и дали толчок для изучения новых явлений природы.

СТО, также известная как частная теория относительности является проработанной описательной моделью для отношений пространства-времени, движения и законов механики, созданная в 1905 году лауреатом Нобелевской премии Альбертом Эйнштейном.

Поступая на отделение теоретической физики Мюнхенского университета, Макс Планк обратился за советом к профессору Филиппу фон Жолли, руководившему в тот момент кафедрой математики этого университета. На что он получил совет: «в этой области почти всё уже открыто, и всё, что остаётся – заделать некоторые не очень важные проблемы». Юный Планк ответил, что он не хочет открывать новые вещи, а только хочет понять и систематизировать уже известные знания. В итоге из одной такой «не очень важной проблемы» впоследствии возникла квантовая теория, а из другой – теория относительности, за которые Макс Планк и Альберт Эйнштейн получили нобелевские премии по физике.

В отличие от многих других теорий, полагавшихся на физические эксперименты, теория Эйнштейна практически полностью была основана на его мысленных экспериментах и только впоследствии была подтверждена на практике. Так ещё в 1895 году (в возрасте всего 16 лет) он задумался о том, что будет, если двигаться параллельно лучу света с его скоростью? В такой ситуации получалось, что для стороннего наблюдателя частицы света должны были колебаться вокруг одной точки, что противоречило уравнениям Максвелла и принципу относительности (который гласил, что физические законы не зависят от места где вы находитесь и скорости с которой вы движетесь). Таким образом юный Эйнштейн пришёл к выводу, что скорость света должна быть недостижима для материального тела, а в основу будущей теории был заложен первый кирпичик.

Следующий эксперимент был проведён им в 1905 году и заключался в том, что на концах движущегося поезда находятся два импульсных источника света которые зажигаются в одно время. Для стороннего наблюдателя, мимо которого проходит поезд, оба этих события происходят одновременно, однако для наблюдателя, находящегося в центре поезда эти события будут казаться произошедшими в разное время, так как вспышка света из начала вагона придёт раньше, чем из его конца (в следствии постоянности скорости света).

Из этого он сделал весьма смелый и далеко идущий вывод, что одновременность событий является относительной. Полученные на основе этих экспериментов расчёты он опубликовал в работе «Об электродинамике движущихся тел». При этом для движущегося наблюдателя один из этих импульсов будет иметь большую энергию нежели другой. Для того чтобы в такой ситуации не нарушался закон сохранения импульса при переходе от одной инерциальной системы отсчёта к другой необходимо было чтобы объект одновременно с потерей энергии должен был терять и массу. Таким образом Эйнштейн пришёл к формуле характеризующую взаимосвязь массы и энергии E=mc 2 – являющейся, пожалуй, самой известной физической формулой на данный момент. Результаты этого эксперимента были опубликованы им позднее в том же году.

Основные постулаты

Постоянство скорости света – к 1907 году были произведены эксперименты по измерению с точностью ±30 км/с (что было больше орбитальной скорости Земли) не обнаружившие её изменения в ходе года. Это стало первым доказательством неизменности скорости света, которое в последствии было подтверждено множеством других экспериментов, как экспериментаторами на земле, так и автоматическими аппаратами в космосе.

Принцип относительности – этот принцип определяет неизменность физических законов в любой точке пространства и в любой инерциальной системе отсчёта. То есть в независимости от того движетесь ли вы со скоростью около 30 км/с по орбите Солнца вместе с Землёй или в космическом корабле далеко за её пределами – ставя физический эксперимент вы всегда будете приходить к одним и тем же результатам (если ваш корабль в это время не ускоряется или замедляется). Этот принцип подтверждался всеми экспериментами на Земле, и Эйнштейн разумно счёл этот принцип верным и для всей остальной Вселенной.

Следствия

Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также что правило сложения скоростей (имевшее в механике Ньютона простой арифметический вид) должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.

Статус теории

Так как формирование из частной теории её общей версии у Эйнштейна заняло только 11 лет, экспериментов для подтверждения непосредственно СТО не проводилось. Однако в том же году, когда была опубликована Эйнштейн также опубликовал свои расчёты, объяснявшие смещение перигелия Меркурия с точностью до долей процентов, без необходимости введения новых констант и других допущений, которые требовались другим теориям, объяснявшим этот процесс. С тех пор правильность ОТО была подтверждена экспериментально с точностью до 10 -20 , а на её основе было сделано множество открытий, что однозначно доказывает правильность этой теории.

Первенство в открытии

Когда Эйнштейн опубликовал свои первые работы по специальной теории относительности и приступил к написанию её общей версии, другими учёными уже была открыта значительная часть формул и идей, заложенных в основе этой теории. Так скажем преобразования Лоренца в общем виде были впервые получены Пуанкаре в 1900 году (за 5 лет до Эйнштейна) и были названы так в честь Хендрика Лоренца получившего приближённую версию этих преобразований, хотя даже в этой роли его опередил Вольдемар Фогт.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Адвокат Соколовского о Тинькове и «Немагии»: «Все это напоминает ситуацию с моим подзащитным Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования