Как считать предел. Первый замечательный предел

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Решение задач на нахождение пределов При решении задач на отыскание пределов следует помнить некоторые пределы, чтобы каждый раз не вычислять их заново. Комбинируя эти известные пределы, будем находить при помощи свойств, указанных в § 4, новые пределы. Для удобства приведем наиболее часто встречающиеся пре делы: Пределы 1 lim х - а х а 2 lim 1 = 0 3 lim х- ± со X ± 00 4 lim -L, = оо Х->о\Х\ 5 lim sin*-l X -о X 6 lim f(x) = f(a), если f (x) непрерывна x a Если известно, что функция непрерывна, то вместо нахождения предела вычисляем значение функции. Пример 1. Найти lim (х*-6л:+ 8). Так как много- Х->2 член-функция непрерывная, то lim (х*-6x4- 8) = 2*-6-2 + 8 = 4. х-+2 х*_2х 4-1 Пример 2. Найти lim -г. . Сначала находим пре- Х-+1 х ~гъх дел знаменателя: lim [хг-\-Ъх)= 12 + 5-1 =6; он не равен Х-У1 нулю, значит, можно применить свойство 4 § 4, тогда x™i *" + &* ~~ lim {х2 Ъх) - 12 + 5-1 ""6 1 . Предел знаменателя X X равен нулю, поэтому свойство 4 § 4 применить нельзя. Так как числитель-постоянное число, а знаменатель [х2х)->-0 при х--1, то вся дробь неограниченно возрастает по абсолютной величине, т. е. lim " 1 Х-*- - 1 х* + х Пример 4. Найти lim \-ll*"!"» « Предел знаменателя равен нулю: lim (хг-6лг+ 8) = 2*-6-2 + 8 = 0, поэтому X свойство 4 § 4 неприменимо. Но предел числителя тоже равен нулю: lim (х2 - 5д; + 6) = 22 - 5-2-f 6 = 0. Итак, пре- делы числителя и знаменателя одновременно равны нулю. Однако число 2 является корнем и числителя и знаменателя, поэтому дробь можно сократить на разность х-2 (по теореме Безу). В самом деле, х*-5х + 6 (х-2) (х-3) х-3 х"-6х + 8~ (х-2) (х-4) ~~ х-4 " следовательно, хг--f- 6 г х-3 -1 1 Пример 5. Найти lim хп (п целое, положительное). X со Имеем хп = X* X . . X, п раз Так как каждый множитель неограниченно растет, то и произведение также неограниченно растет, т. е. lim хп=оо. х оо Пример 6. Найти lim хп(п целое, положительное). X -> - СО Имеем хп = х х... х. Так как каждый множитель растет по абсолютной величине, оставаясь отрицательным, то в случае четной степени произведение будет неограниченно расти, оставаясь положительным, т. е. lim *п= + оо (при п четном). *-* -со В случае нечетной степени абсолютная величина произведения растет, но оно остается отрицательным, т. е. lim хп =- оо (при п нечетном). п -- 00 Пример 7. Найти lim . х х-*- со * Если т>пу то можно написать: m = n + kt где k>0. Поэтому хт Ь lim -=- = lim -=-= lim x . уП Yn х -х> А х ю Пришли к примеру 6. Если же ти уТЛ xm I lim lim lim т. X - О х-* ю Л X ->со Здесь числитель остается постоянным, а знаменатель растет по абсолютной величине, поэтому lim -ь = 0. Х-*оо X* Результат этого примера рекомендуется запомнить в следующем виде: Степенная функция растет тем быстрее, чем больше показатель степени. $хв_Зхг + 7 Пример 8. Найти lim g L -г-=.В этом примере х-*® «J* "Г ЬХ -ох-о и числитель и знаменатель неограниченно возрастают. Разделим и числитель и знаменатель на старшую степень х, т. е. на хв, тогда 3 7_ Пример 9. Найти lira . Совершая преобразова- * г ^ ния, получим lira . . ^ = lim X СО + 3 7 3 Так как lim -5 = 0, lim -, = 0, то предел знаменателя раде-*® Х X-+-CD Х вен нулю, в то время как предел числителя равен 1. Следовательно, вся дробь неограниченно возрастает, т. е. t. 7х hm Х-+ ю Пример 10. Найти lim Вычислим предел S знаменателя, помня, что cos*-функция непрерывная: lira (2 +cos x) = 2 + cosy =2. Тогда х->- S lim (l-fsin*) Пример 15. Найдем lim *<*-e>2 и lim е"(Х"а)\ Поло- Х-+ ± со X ± СО жим (л: - a)2 = z; так как (л;-а)2 всегда неотрицательно и неограниченно растет вместе с х, то при х- ±оо новое переменное z-*ос. Поэтому получаем цт £<*-«)* = X -> ± 00 s=lim ег = оо (см. замечание к §5). г -*■ со Аналогично lim е~(Х-а)2 = lim e~z=Q, так как х ± оо г м - (х- а)г неограниченно убывает при х->±оо (см. замечание к §

Понятия пределов последовательностей и функций. Когда требуется найти предел последовательности, это записывают следующим образом: lim xn=a. В такой последовательности последовательности xn стремится к a, а n к бесконечности. Последовательность обычно представляют в виде ряда, например:
x1, x2, x3...,xm,...,xn... .
Последовательности подразделяются на возрастающие и убывающие. Например:
xn=n^2 - возрастающая последовательность
yn=1/n - последовательность
Так, например, предел последовательности xn=1/n^ :
lim 1/n^2=0

x→∞
Данный предел равен нулю, поскольку n→∞, а последовательность 1/n^2 стремится к нулю.

Обычно переменная величина x стремится к конечному пределу a, причем, x постоянно приближается к a, а величина a постоянна. Это записывают следующим образом: limx =a, при этом, n также может стремиться как к нулю, так и к бесконечности. Существуют бесконечные функции, для них предел стремится к бесконечности. В других случаях, когда, например, функцией замедление хода поезда, можно о пределе, стремящемся к нулю.
У пределов имеется ряд свойств. Как правило, любая функция имеет только один предел. Это главное свойство предела. Другие их перечислены ниже:
* Предел суммы равен сумме пределов:
lim(x+y)=lim x+lim y
* Предел произведения равен произведению пределов:
lim(xy)=lim x*lim y
* Предел частного равен частному от пределов:
lim(x/y)=lim x/lim y
* Постоянный множитель выносят за знак предела:
lim(Cx)=C lim x
Если дана функция 1 /x, в которой x →∞, ее предел равен нулю. Если же x→0, предел такой функции равен ∞.
Для тригонометрических функций имеются из этих правил. Так как функция sin x всегда стремится к единице, когда приближается к нулю, для нее справедливо тождество:
lim sin x/x=1

В ряде встречаются функции, при вычислении пределов которых возникает неопределенность - ситуация, при которой предел невозможно вычислить. Единственным выходом из такой ситуации становится Лопиталя. Существует два вида неопределенностей:
* неопределенность вида 0/0
* неопределенность вида ∞/∞
К примеру, дан предел следующего вида: lim f(x)/l(x), причем, f(x0)=l(x0)=0. В таком случае, возникает неопределенность вида 0/0. Для решения такой задачи обе функции подвергают дифференцированию, после чего находят предел результата. Для неопределенностей вида 0/0 предел равен:
lim f(x)/l(x)=lim f"(x)/l"(x) (при x→0)
Это же правило справедливо и для неопределенностей типа ∞/∞. Но в этом случае справедливо следующее равенство: f(x)=l(x)=∞
С помощью правила Лопиталя можно находить значения любых пределов, в которых фигурируют неопределенности. Обязательное условие при

том - отсутствие ошибок при нахождении производных. Так, например, производная функции (x^2)" равна 2x. Отсюда можно сделать вывод, что:
f"(x)=nx^(n-1)

Математика — наука, строящая мир. Как учёный, так и простой человек — никто не сможет обойтись без неё. Сначала маленьких детей учат считать, потом складывать, вычитать, умножать и делить, к средней школе в ход вступают буквенные обозначения, а в старшей без них уже не обойтись.

Но сегодня речь пойдёт о том, на чём строится вся известная математика. О сообществе чисел под названием «пределы последовательностей».

Что такое последовательности и где их предел?

Значение слова «последовательность» трактовать нетрудно. Это такое построение вещей, где кто-то или что-то расположены в определённом порядке или очереди. Например, очередь за билетами в зоопарк — это последовательность. Причём она может быть только одна! Если, к примеру, посмотреть на очередь в магазин — это одна последовательность. А если один человек из этой очереди вдруг уйдёт, то это уже другая очередь, другой порядок.

Слово «предел» также легко трактуется — это конец чего-либо. Однако в математике пределы последовательностей — это такие значения на числовой прямой, к которым стремится последовательность чисел. Почему стремится, а не заканчивается? Всё просто, у числовой прямой нет конца, а большинство последовательностей, как лучи, имеют только начало и выглядят следующим образом:

х 1 , х 2 , х 3 , …х n …

Отсюда определение последовательности — функция натурального аргумента. Более простыми словами — это ряд членов некоторого множества.

Как строится числовая последовательность?

Простейший пример числовой последовательности может выглядеть так: 1, 2, 3, 4, …n…

В большинстве случаев для практических целей последовательности строятся из цифр, причём каждый следующий член ряда, обозначим его Х, имеет своё имя. Например:

х 1 — первый член последовательности;

х 2 — второй член последовательности;

х 3 — третий член;

х n — энный член.

В практических методах последовательность задаётся общей формулой, в которой есть некоторая переменная. Например:

Х n =3n, тогда сам ряд чисел будет выглядеть так:

Стоит не забывать, что при общей записи последовательностей можно использовать любые латинские буквы, а не только Х. Например: y, z, k и т. д.

Арифметическая прогрессия как часть последовательностей

Прежде чем искать пределы последовательностей, целесообразно поглубже окунуться в само понятие подобного числового ряда, с которым все сталкивались, будучи в средних классах. Арифметическая прогрессия — это ряд чисел, в котором разница между соседними членами постоянна.

Задача: «Пусть а 1 =15, а шаг прогрессии числового ряда d=4. Постройте первые 4 члена этого ряда»

Решение: а 1 = 15 (по условию) — первый член прогрессии (числового ряда).

а 2 = 15+4=19 — второй член прогрессии.

а 3 =19+4=23 — третий член.

а 4 =23+4=27 — четвёртый член.

Однако подобным методом трудно добраться до крупных значений, например до а 125. . Специально для таких случаев была выведена удобная для практики формула: а n =a 1 +d(n-1). В данном случае а 125 =15+4(125-1)=511.

Виды последовательностей

Большинство последовательностей бесконечны, это стоит запомнить на всю жизнь. Существует два интересных вида числового ряда. Первый задаётся формулой а n =(-1) n . Математики часто называют эту последовательностей мигалкой. Почему? Проверим её числовой ряд.

1, 1, -1 , 1, -1, 1 и т. д. На подобном примере становится ясно, что числа в последовательностях могут легко повторяться.

Факториальная последовательность. Легко догадаться — в формуле, задающей последовательность, присутствует факториал. Например: а n = (n+1)!

Тогда последовательность будет выглядеть следующим образом:

а 2 = 1х2х3 = 6;

а 3 = 1х2х3х4 =24 и т. д.

Последовательность, заданная арифметической прогрессией, называется бесконечно убывающей, если для всех её членов соблюдается неравенство -1

а 3 = - 1/8 и т. д.

Существует даже последовательность, состоящая из одного и того же числа. Так, а n =6 состоит из бесконечного множества шестёрок.

Определение предела последовательности

Пределы последовательностей давно существуют в математике. Конечно, они заслужили свое собственное грамотное оформление. Итак, время узнать определение пределов последовательностей. Для начала рассмотрим подробно предел для линейной функции:

  1. Все пределы обозначаются сокращённо lim.
  2. Запись предела состоит из сокращения lim, какой-либо переменной, стремящейся к определённому числу, нулю или бесконечности, а также из самой функции.

Легко понять, что определение предела последовательности может быть сформулировано следующим образом: это некоторое число, к которому бесконечно приближаются все члены последовательности. Простой пример: а x = 4x+1. Тогда сама последовательность будет выглядеть следующим образом.

5, 9, 13, 17, 21…x …

Таким образом, данная последовательность будет бесконечно увеличиваться, а, значит, её предел равен бесконечности при x→∞, и записывать это следует так:

Если же взять похожую последовательность, но х будет стремиться к 1, то получим:

А ряд чисел будет таким: 1.4, 1.8, 4.6, 4.944 и т. д. Каждый раз нужно подставлять число всё больше приближеннее к единице (0.1, 0.2, 0.9, 0.986). Из этого ряда видно, что предел функции — это пять.

Из этой части стоит запомнить, что такое предел числовой последовательности, определение и метод решения простых заданий.

Общее обозначение предела последовательностей

Разобрав предел числовой последовательности, определение его и примеры, можно приступить к более сложной теме. Абсолютно все пределы последовательностей можно сформулировать одной формулой, которую обычно разбирают в первом семестре.

Итак, что же обозначает этот набор букв, модулей и знаков неравенств?

∀ — квантор всеобщности, заменяющий фразы «для всех», «для всего» и т. п.

∃ — квантор существования, в данном случае обозначает, что существует некоторое значение N, принадлежащее множеству натуральных чисел.

Длинная вертикальная палочка, следующая за N, значит, что данное множество N «такое, что». На практике она может означать «такая, что», «такие, что» и т. п.

Для закрепления материала прочитайте формулу вслух.

Неопределённость и определённость предела

Метод нахождения предела последовательностей, который рассматривался выше, пусть и прост в применении, но не так рационален на практике. Попробуйте найти предел для вот такой функции:

Если подставлять различные значения «икс» (с каждым разом увеличивающиеся: 10, 100, 1000 и т. д.), то в числителе получим ∞, но в знаменателе тоже ∞. Получается довольно странная дробь:

Но так ли это на самом деле? Вычислить предел числовой последовательности в данном случае кажется достаточно легко. Можно было бы оставить всё, как есть, ведь ответ готов, и получен он на разумных условиях, однако есть ещё один способ специально для таких случаев.

Для начала найдём старшую степень в числителе дроби — это 1, т. к. х можно представить как х 1 .

Теперь найдём старшую степень в знаменателе. Тоже 1.

Разделим и числитель, и знаменатель на переменную в высшей степени. В данном случае дробь делим на х 1 .

Далее найдём, к какому значению стремится каждое слагаемое, содержащее переменную. В данном случае рассматриваются дроби. При х→∞ значение каждой из дробей стремится к нулю. При оформлении работы в писменном виде стоит сделать такие сноски:

Получается следующее выражение:

Конечно же, дроби, содержащие х, не стали нулями! Но их значение настолько мало, что вполне разрешено не учитывать его при расчётах. На самом же деле х никогда не будет равен 0 в данном случае, ведь на ноль делить нельзя.

Что такое окрестность?

Предположим, в распоряжении профессора сложная последовательность, заданная, очевидно, не менее сложной формулой. Профессор нашёл ответ, но подходит ли он? Ведь все люди ошибаются.

Огюст Коши в своё время придумал отличный способ для доказательства пределов последовательностей. Его способ назвали оперированием окрестностями.

Предположим, что существует некоторая точка а, её окрестность в обе стороны на числовой прямой равна ε («эпсилон»). Поскольку последняя переменная — расстояние, то её значение всегда положительно.

Теперь зададим некоторую последовательность х n и положим, что десятый член последовательности (x 10) входит в окрестность а. Как записать этот факт на математическом языке?

Допустим, х 10 находится правее от точки а, тогда расстояние х 10 -а<ε, однако, если расположить «икс десятое» левее точки а, то расстояние получится отрицательным, а это невозможно, значит, следует занести левую часть неравенства под модуль. Получится |х 10 -а|<ε.

Теперь пора разъяснить на практике ту формулу, о которой говорилось выше. Некоторое число а справедливо называть конечной точкой последовательности, если для любого её предела выполняется неравенство ε>0, причём вся окрестность имеет свой натуральный номер N, такой, что всё члены последовательности с более значительными номерами окажутся внутри последовательности |x n - a|< ε.

С такими знаниями легко осуществить решение пределов последовательности, доказать или опровергнуть готовый ответ.

Теоремы

Теоремы о пределах последовательностей — важная составляющая теории, без которой невозможна практика. Есть всего лишь четыре главных теоремы, запомнив которые, можно в разы облегчить ход решения или доказательства:

  1. Единственность предела последовательности. Предел у любой последовательности может быть только один или не быть вовсе. Тот же пример с очередью, у которой может быть только один конец.
  2. Если ряд чисел имеет предел, то последовательность этих чисел ограничена.
  3. Предел суммы (разности, произведения) последовательностей равен сумме (разности, произведению) их пределов.
  4. Предел частного от деления двух последовательностей равен частному пределов тогда и только тогда, когда знаменатель не обращается в ноль.

Доказательство последовательностей

Иногда требуется решить обратную задачу, доказать заданный предел числовой последовательности. Рассмотрим на примере.

Доказать, что предел последовательности, заданной формулой, равен нолю.

По рассмотренному выше правилу, для любой последовательности должно выполняться неравенство |x n - a|<ε. Подставим заданное значение и точку отсчёта. Получим:

Выразим n через «эпсилон», чтобы показать существование некоего номера и доказать наличие предела последовательности.

На этом этапе важно напомнить, что «эпсилон» и «эн» - числа положительные и не равны нулю. Теперь можно продолжать дальнейшие преобразования, используя знания о неравенствах, полученные в средней школе.

Откуда получается, что n > -3 + 1/ε. Поскольку стоит помнить, что речь идёт о натуральных числах, то результат можно округлить, занеся его в квадратные скобки. Таким образом, было доказано, что для любого значения окрестности «эпсилон» точки а=0 нашлось значение такое, что выполняется начальное неравенство. Отсюда можно смело утверждать, что число а есть предел заданной последовательности. Что и требовалось доказать.

Вот таким удобным методом можно доказать предел числовой последовательности, какой бы сложной она на первый взгляд ни была. Главное — не впадать в панику при виде задания.

А может, его нет?

Существование предела последовательности необязательно на практике. Легко можно встретить такие ряды чисел, которые действительно не имеют конца. К примеру, та же «мигалка» x n = (-1) n . очевидно, что последовательность, состоящая всего лишь из двух цифр, циклически повторяющихся, не может иметь предела.

Та же история повторяется с последовательностями, состоящими из одного числа, дробными, имеющими в ходе вычислений неопределённость любого порядка (0/0, ∞/∞, ∞/0 и т. д.). Однако следует помнить, что неверное вычисление тоже имеет место быть. Иногда предел последоватей найти поможет перепроверка собственного решения.

Монотонная последовательность

Выше рассматривались несколько примеров последовательностей, методы их решения, а теперь попробуем взять более определённый случай и назовём его «монотонной последовательностью».

Определение: любую последовательность справедливо называть монотонно возрастающей, если для нее выполняется строгое неравенство x n < x n +1. Также любую последовательность справедливо называть монотонной убывающей, если для неё выполняется неравенство x n > x n +1.

Наряду с этими двумя условиями существуют также подобные нестрогие неравенства. Соответственно, x n ≤ x n +1 (неубывающая последовательность) и x n ≥ x n +1 (невозрастающая последовательность).

Но легче понимать подобное на примерах.

Последовательность, заданная формулой х n = 2+n, образует следующий ряд чисел: 4, 5, 6 и т. д. Это монотонно возрастающая последовательность.

А если взять x n =1/n, то получим ряд: 1/3, ¼, 1/5 и т. д. Это монотонно убывающая последовательность.

Предел сходящейся и ограниченной последовательности

Ограниченная последовательность — последовательность, имеющая предел. Сходящаяся последовательность — ряд чисел, имеющий бесконечно малый предел.

Таким образом, предел ограниченной последовательности — это любое действительное или комплексное число. Помните, что предел может быть только один.

Предел сходящейся последовательности — это величина бесконечно малая (действительная или комплексная). Если начертить диаграмму последовательности, то в определённой точке она будет как бы сходиться, стремиться обратиться в определённую величину. Отсюда и название — сходящаяся последовательность.

Предел монотонной последовательности

Предел у такой последовательности может быть, а может и не быть. Сначала полезно понять, когда он есть, отсюда можно оттолкнуться при доказательстве отсутствия предела.

Среди монотонных последовательностей выделяют сходящуюся и расходящуюся. Сходящаяся — это такая последовательность, которая образована множеством х и имеет в данном множестве действительный или комплексный предел. Расходящаяся — последовательность, не имеющая предела в своём множестве (ни действительного, ни комплексного).

Причём последовательность сходится, если при геометрическом изображении её верхний и нижний пределы сходятся.

Предел сходящейся последовательности во многих случаях может быть равен нулю, так как любая бесконечно малая последовательность имеет известный предел (ноль).

Какую сходящуюся последовательность ни возьми, они все ограничены, однако далеко не все ограниченные последовательности сходятся.

Сумма, разность, произведение двух сходящихся последовательностей - также сходящаяся последовательность. Однако частное может быть также сходящейся, если оно определено!

Различные действия с пределами

Пределы последовательностей — это такая же существенная (в большинстве случаев) величина, как и цифры и числа: 1, 2, 15, 24, 362 и т. д. Получается, что с пределами можно проводить некоторые операции.

Во-первых, как и цифры и числа, пределы любых последовательностей можно складывать и вычитать. Исходя из третьей теоремы о пределах последовательностей, справедливо следующее равенство: предел суммы последовательностей равен сумме их пределов.

Во-вторых, исходя из четвёртой теоремы о пределах последовательностей, справедливо следующее равенство: предел произведения n-ого количества последовательностей равен произведению их пределов. То же справедливо и для деления: предел частного двух последовательностей равен частному их пределов, при условии что предел не равен нулю. Ведь если предел последовательностей будет равен нулю, то получится деление на ноль, что невозможно.

Свойства величин последовательностей

Казалось бы, предел числовой последовательности уже разобран довольно подробно, однако не раз упоминаются такие фразы, как «бесконечно маленькие» и «бесконечно большие» числа. Очевидно, если есть последовательность 1/х, где x→∞, то такая дробь бесконечно малая, а если та же последовательность, но предел стремится к нулю (х→0), то дробь становится бесконечно большой величиной. А у таких величин есть свои особенности. Свойства предела последовательности, имеющей какие угодно малые или большие величины, состоят в следующем:

  1. Сумма любого количества сколько угодно малых величин будет также малой величиной.
  2. Сумма любого количества больших величин будет бесконечно большой величиной.
  3. Произведение сколь угодно малых величин бесконечно мало.
  4. Произведение сколько угодно больших чисел — величина бесконечно большая.
  5. Если исходная последовательность стремится к бесконечно большому числу, то величина, ей обратная, будет бесконечно малой и стремиться к нулю.

На самом деле вычислить предел последовательности - не такая сложная задача, если знать простой алгоритм. Но пределы последовательностей — тема, требующая максимума внимания и усидчивости. Конечно, достаточно просто уловить суть решения подобных выражений. Начиная с малого, со временем можно достигнуть больших вершин.

Основных элементарных функций разобрались.

При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называют неопределенностями .

Перечислим все основные виды неопределенностей : ноль делить на ноль (0 на 0 ), бесконечность делить на бесконечность , ноль умножить на бесконечность , бесконечность минус бесконечность , единица в степени бесконечность , ноль в степени ноль , бесконечность в степени ноль .

ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.


Раскрывать неопределенности позволяет:

  • упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
  • использование замечательных пределов;
  • применение правила Лопиталя ;
  • использование замены бесконечно малого выражения ему эквивалентным (использование таблицы эквивалентных бесконечно малых).

Сгруппируем неопределенности в таблицу неопределенностей . Каждому виду неопределенности поставим в соответствие метод ее раскрытия (метод нахождения предела).

Эта таблица вместе с таблицей пределов основных элементарных функций будут Вашими главными инструментами при нахождении любых пределов.

Приведем парочку примеров, когда все сразу получается после подстановки значения и неопределенности не возникают.

Пример.

Вычислить предел

Решение.

Подставляем значение:

И сразу получили ответ.

Ответ:


Пример.

Вычислить предел

Решение.

Подставляем значение х=0 в основание нашей показательно степенной функции:

То есть, предел можно переписать в виде

Теперь займемся показателем. Это есть степенная функция . Обратимся к таблице пределов для степенных функций с отрицательным показателем. Оттуда имеем и , следовательно, можно записать .

Исходя из этого, наш предел запишется в виде:

Вновь обращаемся к таблице пределов, но уже для показательных функций с основанием большим единицы, откуда имеем:

Ответ:

Разберем на примерах с подробными решениями раскрытие неопределенностей преобразованием выражений .

Очень часто выражение под знаком предела нужно немного преобразовать, чтобы избавиться от неопределенностей.

Пример.

Вычислить предел

Решение.

Подставляем значение:

Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения. Пробуем упростить выражение.

Ответ:

Пример.

Вычислить предел

Решение.

Подставляем значение:

Пришли к неопределенности (0 на 0 ). Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Домножим и числитель и знаменатель на выражение, сопряженное знаменателю.

Для знаменателя сопряженным выражением будет

Знаменатель мы домножали для того, чтобы можно было применить формулу сокращенного умножения – разность квадратов и затем сократить полученное выражение.

После ряда преобразований неопределенность исчезла.

Ответ:

ЗАМЕЧАНИЕ: для пределов подобного вида способ домножения на сопряженные выражения является типичным, так что смело пользуйтесь.

Пример.

Вычислить предел

Решение.

Подставляем значение:

Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Так как и числитель и знаменатель обращаются в ноль при х=1 , то если эти выражения, можно будет сократить (х-1) и неопределенность исчезнет.

Разложим числитель на множители:

Разложим знаменатель на множители:

Наш предел примет вид:

После преобразования неопределенность раскрылась.

Ответ:

Рассмотрим пределы на бесконечности от степенных выражений. Если показатели степенного выражения положительны, то предел на бесконечности бесконечен. Причем основное значение имеет наибольшая степень, остальные можно отбрасывать.

Пример.

Пример.

Если выражение под знаком предела представляет собой дробь, причем и числитель и знаменатель есть степенные выражения (m – степень числителя, а n – степень знаменателя), то при возникает неопределенность вида бесконечность на бесконечность , в этом случае неопределенность раскрывается делением и числитель и знаменатель на

Пример.

Вычислить предел

Элементарные функции и их графики.

Основными элементарными функциями считаются: степенная функция, показательная функция, логарифмическая функция, тригонометрические функции и обратные тригонометрические функции, а также многочлен и рациональная функция, которая представляет собой отношение двух многочленов.

К элементарным функциям относятся и те функции, которые получаются из элементарных путем применения основных четырех арифметических действий и образования сложной функции.

Графики элементарных функций

Прямая линия - график линейной функции y = ax + b . Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т. 0 (y = ax - прямая пропорциональность)
Парабола - график функции квадратного трёхчлена у = ах 2 + bх + с . Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax 2 + bx +с =0
Гипербола - график функции . При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х(а > 0) или у - - х(а < 0).
Показательная функция. Экспонента (показательная функция по основанию е) у = е x . (Другое написание у = ехр(х) ). Асимптота - ось абсцисс.
Логарифмическая функция y = log a x (a > 0)
у = sinx. Синусоида - периодическая функция с периодом Т = 2π

Предел функции.

Функция y=f(x) имеет число А пределом при стремлении х к а, если для любого числа ε › 0 найдется такое число δ › 0, что | y – A | ‹ ε если |х - а| ‹ δ,

или lim у = A

Непрерывность функции.

Функция y=f(x) непрерывна в точке х = а, если lim f(x) = f(а), т.е.

предел функции в точке х = а равен значению функции в данной точке.

Нахождение пределов функций.

Основные теоремы о пределах функций.

1. Предел постоянной величины равен этой постоянной величине:

2. Предел алгебраической суммы равен алгебраической сумме пределов этих функций:

lim (f + g - h) = lim f + lim g - lim h

3. Предел произведения нескольких функций равен произведению пределов этих функций:

lim (f * g* h) = lim f * lim g * lim h

4. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен 0:

lim ------- = ----------

Первый замечательный предел: lim --------- = 1

Второй замечательный предел: lim (1 + 1/x) x = e (e = 2, 718281..)

Примеры нахождения пределов функций.

5.1. Пример:

Любой предел состоит из трех частей:

1) Всем известного значка предела .

2) Записи под значком предела . Запись читается «икс стремится к единице». Чаще всего – именно х, хотя вместо «икса» может быть любая другая переменная. На месте единицы может находиться совершенно любое число, а также бесконечность 0 или .

3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Очень важный вопрос – а что значит выражение «икс стремится к единице»? Выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают.

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан предел, надо сначала просто подставить число в функцию.

5.2. Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает.

Итак: если , то функция стремится к минус бесконечности:

Согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ.

5.3. Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции.
Вывод: прифункциянеограниченно возрастает

5.4. Серия примеров:

Попытайтесь самостоятельно мысленно проанализировать нижеследующие примеры и решить простейшие виды пределов:

, , , , , , , , ,

Что нужно запомнить и понять из вышесказанного?

Когда дан любой предел, сначала просто подставить число в функцию. При этом Вы должны понимать и сразу решать простейшие пределы, такие как, , и т.д.

6. Пределы с неопределенностью видаи метод их решения.

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены.

6.1. Пример:

Вычислить предел

Согласно нашему правилу попы таемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что = 1, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенностьнеобходимо разделить числитель и знаменатель на в старшей степени.



Таким образом, ответ , а вовсе не 1.

Пример

Найти предел

Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3

Максимальная степень в знаменателе: 4

Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .

Пример

Найти предел

Максимальная степень «икса» в числителе: 2

Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение