Изменения структуры генов или хромосом называются. Причины изменения числа хромосом. Оплодотворение яйцеклеток вне организма животного

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Хромосомные мутации являются причинами возникновения хромосомных болезней.

Хромосомные мутации – это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то, что хромосомные абберации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные

Внутрихромосомные мутации – это абберации в пределах одной хромосомы. К ним относятся:

    – утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, делеция в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития. Этот симптомокомплекс известен как синдром "кошачьего крика", поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье);

    Инверсии. В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180 о. В результате нарушается только порядок расположения генов;

    дупликации – удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу 9-й хромосомы обуславливает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Межхромосомные мутации, или мутации перестройки – обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от латинских trans – за, через и locus – место). Это:

    реципрокная транслокация – две хромосомы обмениваются своими фрагментами;

    нереципрокная транслокация – фрагмент одной хромосомы транспортируется на другую;

    "центрическое" слияние (робертсоновская транслокация) – соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры "сестринские" хроматиды становятся "зеркальными" плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называются изохромосомами.

Транслокации и инверсии, являющиеся сбалансированными хромосомными перестройками, не имеют фенотипических проявлений, но в результате сегрегации перестроенных хромосом в мейозе могут образовать несбалансированные гаметы, что повлечет за собой возникновение потомства с хромосомными аномалиями.

Геномные мутации

Геномные мутации, как и хромосомные, являются причинами возникновения хромосомных болезней.

К геномным мутациям относятся анеуплоидии и изменения плоидности структурно неизмененных хромосом. Геномные мутации выявляются цитогенетическими методами.

Анеуплоидия – изменение (уменьшение – моносомия, увеличение – трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n+1, 2n-1 и т.д.).

Полиплоидия – увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидий являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

    трисомия – наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре при болезни Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, XXY, XYY);

    моносомия – наличие только одной из двух гомологических хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона не возможно. Единственная моносомия у человека, совместимая с жизнью – моносомия по Х-хромосоме – приводит к синдрому Шерешевского-Тернера (45,Х).

Причиной, приводящей к анеуплодии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от других негомологичных хромосом. Термин нерасхождение означает отсутствие разделения хромосом или хроматид в мейозе или митозе.

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки, таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая – не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т.е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомная зигота образуется по какой-либо аутосомной хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

У соматических клеток возникают все виды мутаций,(в т. ч. под действием различных излучений) характерные и для половых клеток.

Все наследственные заболевания, обусловленные наличием одного патологического гена, наследуются, в соответствии с законами Менделя. Возникновение наследственных болезней обусловлено нарушениями в процессе хранения, передачи и реализации наследственной информации. Ключевую роль наследственных факторов в возникновении патологического гена, приводящего к заболеванию, подтверждает очень высокая частота ряда заболеваний в некоторых семьях по сравнению с населением в целом.

В основе возникновения наследственных заболевании лежат мутации: преимущественно хромосомные и генные. Следовательно, выделяют хромосомные и наследственные генные болезни.

Хромосомные болезни классифицируются по типу генной или хромосомной мутации и сопутствующей индивидуальности, вовлекаемой в изменение хромосомы. В связи с этим выдерживается важный для подразделения по нозологическому принципу наследственной патологии патогенетический принцип:

Для каждой болезни устанавливается генетическая структура (хромосома и её сегмент), которая определяет патологию;

Выявляется, в чём состоит генетическое нарушение. Оно определяется недостатком либо избытком хромосомного материала.

ЧИСЛЕННЫЕ НАРУШЕНИЯ: состоят в изменении плоидности хромосомного набора и в отклонении числа хромосом от диплоидного по каждой их паре в сторону уменьшения (такое нарушение называется моносомия) или в сторону увеличения (трисомия и другие формы полисомий). Хорошо изучены триплоидные и тетраплоидные организмы; частота их возникновений низкая. В основном это самоабортировавшие эмбрионы (выкидыши) и мёртворождённые. Если всё-таки и появляются новорождённые с такими нарушениями, то живут они, как правило, не больше 10 дней.

Геномные мутации по отдельным хромосомам многочисленны, они составляют основную массу хромосомных болезней. Полные моносомии наблюдаются по X-хромосоме, приводя к развитию синдрома Шеревского-Тернера. Аутосомные моносомии среди живорождённых очень редки. Живорождённые – это организмы с существенной долей нормальных клеток: моносомия касается аутосом 21 и 22.

Полные трисомии изучены по значительно большему числу хромосом: 8, 9, 13, 14, 18 ,21, 22 и Х-хромосом. Число Х-хромосом у индивида может доходить до 5 и при этом сохраняется его жизнеспособность, в основном непродолжительная.

Изменения количества индивидуальных хромосом вызывают нарушения их распределения по дочерним клеткам во время первого и второго мейотического деления в гаметогенезе или в первых дроблениях оплодотворённой яйцеклетки.

Причинами такого нарушения могут быть:

Нарушение расхождения во время анафазы редуплицируемой хромосомы, в результате чего удвоенная хромосома попадает лишь в одну дочернюю клетку.

Нарушение конъюгации гомологичных хромосом, что также может нарушить правильность расхождения гомологов по дочерним клеткам.

Отставание хромосом в анафазе при их расхождении в дочерней клетке, что может привести к утрате хромосомы.

Если одно из выше изложенных нарушений происходит в двух или более последовательных делениях, возникают тетросомии и другие виды полисомии.

СТРУКТУРНЫЕ НАРУШЕНИЯ. Какого бы вида они ни были, вызывают части материала по данной хромосоме (частичная моносомия), либо его избытка (частичная трисомия). К частичной моносомии могут привести простые делеции всего плеча, интерстициальные и концевые (терминальные). В случае концевых делеций обоих плеч Х-хромосома может стать кольцевой. Такие события могут произойти на любом этапе гаметогенеза, в том числе и после завершения половой клеткой обоих мейотических делений. Также к частичной моносомии могут привести имеющиеся в организме родителя сбалансированные перестройки типоинверсий, реципрокных и робертсоновских транслокаций. Это является результатом формирования несбалансированной гаметы. Частичные трисомии также возникают неодинаково. Это могут быть возникшие заново дубликации того или иного сегмента. Но чаще всего они являются унаследованными от нормальных фенотипических родителей, которые являются носителями сбалансированных транслокаций или инверсий в результате попадания в гамету хромосомы несбалансированной в сторону избытка материала. Порознь частичные моносомии или трисомии встречаются реже, чем в комбинации, когда пациент одновременно имеет частичную моносомию по одной хромосоме и частичную трисомию по другой.

Основную группу составляют изменения содержания в хромосоме структурного гетерохроматина. Это явление лежит в основе нормального полиморфизма, когда вариации в содержании гетерохроматина не ведут за собой неблагоприятных изменений фенотипа. Однако в ряде случаев дисбаланс по гетерохроматиновым районам приводит к разрушению умственного развития.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Изменение числа хромосом в клетке означает изменение генома. (Поэтому такие изменения часто называют геномными мутациями.) Известны различные цитогенетические феномены, связанные с изменением числа хромосом.

Автополиплоидия

Автополиплоидия представляет собой многократное повторение одного и того же генома, или основного числа хромосом (х ).

Этот тип полиплоидии характерен для низших эукариот и покрытосеменных растений. У многоклеточных животных автополиплоидия встречается крайне редко: у дождевых червей, некоторых насекомых, некоторых рыб и земноводных. Автополиплоиды у человека и других высших позвоночных погибают на ранних стадиях внутриутробного развития.

У большинства эукариотических организмов основное число хромосом (x ) совпадает с гаплоидным набором хромосом (n ); при этом гаплоидное число хромосом - это число хромосом в клетках, образовавшихся в хорде мейоза. Тогда в диплоидных (2n ) содержится два генома x , и 2n =2x . Однако у многих низших эукариот, многих споровых и покрытосеменных растений в диплоидных клетках содержится не 2 генома, а некоторое иное число. Число геномов в диплоидных клетках называется геномным числом (Ω). Последовательность геномных чисел называется полиплоидным рядом .

Например, у злаков при x = 7 известны следующие полиплоидные ряды (знаком + отмечено наличие полиплоида определенного уровня)

Различают сбалансированные и несбалансированные автополиплоиды. Сбалансированными полиплоидами называются полиплоиды с чётным числом хромосомных наборов, а несбалансированными - полиплоиды с нечетным числом хромосомных наборов, например:

несбалансированные полиплоиды

сбалансированные полиплоиды

гаплоиды

1 x

диплоиды

2 x

триплоиды

3 x

тетраплоиды

4 x

пентаплоиды

5 x

гексаплоиды

6 x

гектаплоиды

7 x

октоплоиды

8 x

эннеаплоиды

9 x

декаплоиды

10 x

Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов, повышенным содержанием сахаров и витаминов. Например, триплоидная осина (3х = 57) достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (ряд сортов земляники, яблони, арбузов, бананов, чая, сахарной свеклы), так и тетраплоиды (ряд сортов ржи, клевера, винограда). В природных условиях автополиплоидные растения обычно встречаются в экстремальных условиях (в высоких широтах, в высокогорьях); более того, здесь они могут вытеснять нормальные диплоидные формы.

Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Однако в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Однако автополиплоиды (особенно несбалансированные) характеризуются сниженной плодовитостью или полным бесплодием, что связано с нарушениями мейоза. Поэтому многие из них способны только к размножению вегетативным путем.

Аллополиплоидия

Аллополиплоидия представляет собой многократное повторение двух и более разных гаплоидных хромосомных наборов, которые обозначаются разными символами. Полиплоиды, полученные в результате отдаленной гибридизации, то есть от скрещивания организмов, принадлежащих к различным видам, и содержащие два и более набора разных хромосом, называются аллополиплоиды .

Аллополиплоиды широко распространены среди культурных растений. Однако, если в соматических клетках содержится по одному геному от разных видов (например, один геном А и один - В ), то такойаллополиплоид - бесплоден. Бесплодие простых межвидовых гибридов связано с тем, что каждая хромосома представлена одним гомологом, и образование бивалентов в мейозе оказывается невозможным. Таким образом, при отдаленной гибридизации возникает мейотический фильтр, препятствующий передаче наследственных задатков в последующие поколения половым путем.

Поэтому у плодовитых полиплоидов каждый геном должен быть удвоен. Например, у разных видов пшеницы гаплоидное число хромосом (n ) равно 7. Дикая пшеница (однозернянка) содержит в соматических клетках 14 хромосом лишь одного удвоенного генома А и имеет геномную формулу 2n = 14 (14А ). Многие аллотетраплоидные твердые пшеницы содержат в соматических клетках 28 хромосом удвоенных геномов А и В ; их геномная формула 2n = 28 (14А + 14В ). Мягкие аллогексаплоидные пшеницы содержат в соматических клетках 42 хромосомы удвоенных геномов А , В , и D ; их геномная формула 2n = 42 (14 A + 14B + 14D ).

Плодовитые аллополиплоиды можно получать искусственным путем. Например, редечно-капустный гибрид, синтезированный Георгием Дмитриевичем Карпеченко, был получен путем скрещиванием редьки и капусты. Геном редьки обозначается символом R (2n = 18 R , n = 9 R ), а геном капусты - символом B (2n = 18 B , n = 9 B ). Первоначально полученный гибрид имел геномную формулу 9 R + 9 B . Этот организм (амфигаплоид) был бесплодным, поскольку в мейозе образовывалось 18 одиночных хромосом (унивалентов) и ни одного бивалента. Однако у этого гибрида некоторые гаметы оказались нередуцированными. При слиянии таких гамет был получен плодовитый амфидиплоид: (9 R + 9 B ) + (9 R + 9 B ) → 18 R + 18 B . У этого организма каждая хромосома была представлена парой гомологов, что обеспечило нормальное образование бивалентов и нормальное расхождение хромосом в мейозе: 18 R + 18 B → (9 R + 9 B ) и (9 R + 9 B ).

В настоящее время ведется работа по созданию искусственных амфидиплоидов у растений (например, пшенично-ржаных гибридов (тритикале), пшенично-пырейных гибридов) и животных (например, гибридных шелкопрядов).

Тутовый шелкопряд - объект интенсивной селекционный работы. Нужно учесть, что у этого вида (как и у большинства бабочек) самки - гетерогаметный пол (XY ), а самцы - гомогаметный (XX ). Для быстрого размножения новых пород шелкопряда используют индуцированный партеногенез - из самок извлекают неоплодотворенные яйца еще до мейоза и нагревают их до 46 °С. Из таких диплоидных яиц развиваются только самки. Кроме того, у шелкопряда известен андрогенез - если яйцеклетку нагреть до 46 °С, убить ядро рентгеновскими лучами, а затем осеменить, то в яйцеклетку могут проникнуть два мужских ядра. Эти ядра сливаются между собой, и образуется диплоидная зигота (ХХ ), из которой развивается самец.

Для тутового шелкопряда известна автополиплоидия. Кроме того, Борис Львович Астауров скрещивал тутового шелкопряда с дикой форой мандаринового шелкопряда, и в результате были получены плодовитые аллополиплоиды (точнее, аллотетраплоиды).

У тутового шелкопряда выход шелка из коконов мужского пола на 20-30 % выше, чем из коконов женского пола. В.А. Струнников с помощью индуцированного мутагенеза вывел породу, у которой самцы в Х -хромосомах несут разные летальные мутации (система сбалансированных леталей) - их генотип l1+/+l2 . При скрещивании таких самцов с нормальными самками (++/ Y ) из яиц выходят только будущие самцы (их генотип l1+/++ или l2/++ ), а самки погибают на эмбриональной стадии развития, поскольку их генотип или l1+/Y , или + l2/Y . Для разведения самцов с летальными мутациями используются специальные самки (их генотип + l2/++·Y ). Тогда при скрещивании таких самок и самцов с двумя летальными аллелями в их потомстве половина самцов погибает, а половина - несет два летальных аллеля.

Существуют породы тутового шелкопряда, у которых в Y -хромосоме имеется аллель темной окраски яиц. Тогда темные яйца (XY , из которых должны вывестись самки), отбраковываются, а оставляются только светлые (ХХ ), которые в дальнейшем дают коконы самцов.

Анеуплоидия

Анеуплоидия (гетерополиплоидия) - это изменение числа хромосом в клетках, некратное основному хромосомному числу. Различают несколько типов анеуплоидии. При моносомии утрачивается одна из хромосом диплоидного набора (2 n - 1 ). При полисомии к кариотипу добавляется одна или несколько хромосом. Частным случаем полисомии является трисомия (2 n + 1 ), когда вместо двух гомологов их становится три. При нуллисомии отсутствуют оба гомолога какой-либо пары хромосом (2 n - 2 ).

У человека анеуплоидия приводит к развитию тяжелых наследственных заболеваний. Часть из них связана с изменением числа половых хромосом (см. главу 17). Однако существуют и другие заболевания:

Трисомия по 21-ой хромосоме (кариотип 47, +21 ); синдром Дауна; частота среди новорожденных - 1:700. Замедленное физическое и умственное развитие, широкое расстояние между ноздрями, широкая переносица, развитие складки века (эпикант), полуоткрытый рот. В половине случаев встречаются нарушения в строении сердца и кровеносных сосудов. Обычно понижен иммунитет. Средняя продолжительность жизни - 9-15 лет.

Трисомия по 13-ой хромосоме (кариотип 47, +13 ); синдром Патау. Частота среди новорожденных - 1:5.000.

Трисомия по 18-ой хромосоме (кариотип 47, +18 ); синдром Эдвардса. Частота среди новорожденных - 1:10.000.

Гаплоидия

Уменьшение числа хромосом в соматических клетках до основного числа называется гаплоидия . Существуют организмы - гаплобионты , для которых гаплоидия - это нормальное состояние (многие низшие эукариоты, гаметофиты высших растений, самцы перепончатокрылых насекомых). Гаплоидия как аномальное явление встречается среди спорофитов высших растений: у томата, табака, льна, дурмана, некоторых злаков. Гаплоидные растения отличаются пониженной жизнеспособностью; они практически бесплодны.

Псевдополиплоидия (ложная полиплоидия)

В некоторых случаях изменение числа хромосом может произойти без изменения объема генетического материала. Образно выражаясь, изменяется число томов, но не изменяется число фраз. Такое явление называется псевдополиплоидия . Различают две основные формы псевдополиплоидии:

1. Агматополиплоидия. Наблюдается в том случае, если крупные хромосомы распадаются на множество мелких. Встречается у некоторых растений и насекомых. У некоторых организмов (например, у круглых червей) происходит фрагментация хромосом в соматических клетках, но в половых клетках сохраняются исходные крупные хромосомы.

2. Слияние хромосом. Наблюдается в том случае, если мелкие хромосомы объединяются в крупные. Встречается у грызунов.

Изменения кариотипа могут быть количественными, структурными и одновременно теми и другими. Рассмотрим отдельные формы изменения хромосом (см. схему).

Числовые мутации кариотипа. Эта группа мутаций связана с изменением числа хромосом в кариотипе. Количественные изменения в хромосомном составе клеток называют геномными мутациями. Они подразделяются на гетерогаюидию, анеуплоидию, полиплоидию.

Гетероплоидия обозначает общее изменение числа хромосом по отношению к диплоидному полному набору.

Об анеуплоидии говорят в тех случаях, когда число хромосом в клетке увеличено на одну (трисомия) или более (полисемия) или уменьшено на одну (моносомия). Употребляют также термины «гиперплоидия» и «гипоплоидия». Первый из них означает увеличенное число хромосом в клетке, а второй - уменьшенное.

Полиплоидией называют увеличение числа полных хромосомных наборов в четное или нечетное число раз. Полиплоидные клетки могут быть тригогоидньщи, тетраплоидными, пентаплоид-ными, гексаплоидными и т. д.

Структурные мутации хромосом. Эта группа мутаций связана с изменением формы, размеров хромосом, порядка расположения генов (изменение групп сцепления), утратой или добавкой отдельных фрагментов и т. д. Изменения структуры одной или нескольких хромосом называют хромосомными мутациями. Установлено несколько типов структурных мутаций хромосом.

Транслокации - перемещения отдельных фрагментов хромосом из одного участка в другой, обмены фрагментами между разными хромосомами, слияния хромосом. При взаимных обменах фрагментами между гомологичными или негомологичными хромосомами возникают транслокации, называемые реципрокными. Если целое плечо одной хромосомы присоединяется к концам другой хромосомы, такой тип транслокаций называют тандемным. Слияние двух акроцентрических хромосом в области центромер формирует транслокацию робертсоновского типа и образование мета-и субметацентрических хромосом. При этом обнаруживается элиминация блоков прицентромерного гетерохроматина.

Инверсии - внутрихромосомные аберрации, при которых фрагменты хромосом разворачиваются на 180°. Различают пери-и парацентрические инверсии. Если перевернутый фрагмент содержит центромеру, инверсия называется перицентрической.

Делеции - потеря срединного фрагмента хромосомы, в результате ^чего она укорачивается.

Нехватки - потеря концевого фрагмента хромосомы.

Дупликация - удвоение фрагмента одной хромосомы (интра-хромосомные дупликации) или разных хромосом- (интерхромосомные дупликации).

Кольцевые хромосомы формируются при наличии двух концевых разрывов (нехваток).

Изохромосомы возникают, если в противоположность нормально-. му делению хроматид в длину происходит горизонтальное (поперечное) деление хромосомы в центромере с последующим слиянием гомолргичных плеч в новую хромосому - изохромосому. Ее проксимальные и дистальные участки идентичны по строению и составу генов. В зависимости от того, сколько хроматид изменено (одна или две), структурные аномалии подразделяются на хромосомные и хро-матидные. На рисунке 34 приведены схемы образования различных типов структурных изменений хромосом или аберраций.

Изменения структуры хромосом включают делеции, транслокации, инверсии, дупликации, инсерции.

Делеции это изменения структуры хромосом в виде отсутствия ее участка. При этом возможно развитие простой делеции или делеции с дупликацией участка дру­гой хромосомы.

В последнем случае причиной изменения структуры хромосомы, как правило, служит кроссинговер в мейозе у носителя транслокации, что приводит к появлению несба­лансированной реципрокной хромосомной транс­локации. Делеции могут локализоваться на конце или во внутренних участках хромосо­мы и обычно ассоциируются с умственной отста­лостью и пороками развития. Небольшие делеции в области теломеры относительно часто обнаружи­ваются при неспецифической умственной отста­лости в сочетании с микроаномалиями развития. Делеции можно выявить при рутинном получении хромосом, однако микроделеции полу­чается идентифицировать только при микроскопи­ческом исследовании в профазе. В случа­ях субмикроскопических делеций отсутствующий участок можно обнаружить только с помощью мо­лекулярных зондов или анализа ДНК.

Микроделеции определяются как мелкие хромо­сомные делеции, различимые только в препаратах высокого качества в метафазе. Эти делеции чаще встречаются в нескольких генах, диагноз у больного предполагается на основании необычных фенотипических проявлений, которые, казалось бы, связаны с единственной мутацией. Синдро­мы Вильямса, Лангера-Гидиона, Прадера-Вилли, Рубинстайна-Тейби, Смит-Мадженис, Миллера-Дикера, Алагилля, Ди Джорджи обусловлены микроделециями. Субмикроскопические делеции невидимы при микроскопическом ис­следовании и обнаруживаются только при приме­нении специфических методов исследования ДНК. Делеции распознаются по отсутствию окрашива­ния или флюоресценции.

Транслокации представляют собой изменение структуры хромосом в виде переноса хромосомного материала из одной на другую. Выделяют робертсоновские и реципрокные транслокации. Частота 1:500 новорожденных. Транслокации могут пере­даваться по наследству от родителей или возникают de novo при отсутствии патологии у других членов семьи.

Робертсоновские транслокации вовлекают две акроцентрические хромосомы, сращение которых наблюдается близко к области центромеры с по­следующей потерей нефункциональных и очень усеченных коротких плеч. После транслокации хромосома состоит из длинных плеч, которые скла­дываются из двух сращенных хромосом. Таким об­разом, кариотип насчитывает всего 45 хромосом. Негативные последствия потери коротких плеч неизвестны. Хотя но­сители робертсоновской транслокации, как прави­ло, имеют нормальный фенотип, у них повышен риск выкидышей и рождения потомства с анома­лиями.

Реципрокные транслокации возникают в ре­зультате поломок негомологичных хромосом в сочетании с реципрокным обменом потерянными сегментами. Носители реципрокной транслокации обычно имеют нормальный фенотип, однако у них также повышен риск рождения потомства с хромо­сомными аномалиями и выкидышей в связи с ано­малиями сегрегации хромосом в половых клетках.

Инверсии – изменения структуры хромосом, возникающие при ее разрыве в двух точках. Отломанный участок переворачивается и присоединяется к месту разрыва. Инверсии встречаются у 1:100 новорожденных и могут быть пери- или парацен­трическими. При перицентрических инверсиях раз­рывы возникают на двух противоположных плечах, происходит поворот части хромосомы, содержащей центромеру. Такие инверсии обычно выявляются в связи с изменением положения цен­тромеры. Напротив, при парацентрических инвер­сиях вовлекается только участок, расположенный на одном плече. Носители инверсий обычно имеют нормальный фенотип, од­нако у них может быть повышен риск спонтанных выкидышей и рождения потомства с хромосомны­ми аномалиями.

Кольцевые хромосомы встречаются редко, од­нако их образование возмож­но из любой хромосомы человека. Формированию кольца предшествуют делеции на каждом конце. Затем концы «склеива­ются» с формированием кольца. Фенотипические проявления при кольцевых хромосомах варьируют от умственной отсталости и множественных анома­лий развития до нормы или минимально выражен­ных изменений в зависимости от количества «по­терянного» хромосомного материала. Если кольцо замещает нормальную хромосому, это приводит к развитию частичной моносомии. Фенотипиче­ские проявления в этих случаях часто аналогичны изменениям, наблюдаемых при делециях. Если кольцо добавляется к нормальным хромосомам, возникают фенотипические проявле­ния частичной трисомии.

Дупликацией называют избыточное количе­ство генетического материала, принадлежащего одной хромосоме. Дупликации могут возникать в результате патологической сегрегации у носителей транслокаций или инверсий.

Инсерции (вставки) – это изменения структуры хромосом, возникающие при поломке в двух точках, при этом отломанный участок встраивается в зону разрыва на другой части хромосомы. Для формирования инсерции необходимы три точки разрыва. В этом процессе может участвовать одна или две хромосомы.

Теломерические, субтеломерические деле­ции. Поскольку хромосомы тесно переплетаются в процессе мейоза, мелкие делеции и дупликации в области, расположенной ближе к концам, встречаются относительно часто. Субте­ломерические хромосомные перестановки чаще (5-10 %) обнаруживаются у детей с умеренной или тяжелой умственной отсталостью неясной этиоло­гии без выраженных дизморфических признаков.

Субмикроскопические субтеломерические делеции (меньше 2-3 Мб) - вторая по частоте встречае­мости причина умственной отсталости после три­сомии 21. Клинические проявления этого изменения структуры хромосом у некоторых из этих детей включают пренатальную задержку роста (около 40 % случаев) и умственную отста­лость в семейном анамнезе (50% случаев). Другие симптомы выявляются примерно у 30% пациен­тов и включают микроцефалию, гипертелоризм, дефекты носа, ушей или кистей рук, крипторхизм и короткий рост. После исключения других при­чин задержки развития рекомендуется метод FISH с использованием множества теломерических зон­дов в метафазе.

Статью подготовил и отредактировал: врач-хирург

5.2. Хромосомные мутации

Хромосомные мутации подразделяют на две категории: 1) мутации, связанные с изменениями числа хромосом в составе кариотипа (иногда их называют также численными аберрациями либо геномными мутациями); 2) мутации, состоящие в изменениях структуры отдельных хромосом (структурные аберрации).

Изменения числа хромосом. Они могут выражаться в добавлении к первоначальному диплоидному набору хромосом (2n) одного или нескольких гаплоидных наборов (n), что приводит к возникновению полиплоидии (триплоидии, 3n, тетраплоидии, 4n, и др.). Возможны также добавления либо потери одной или нескольких хромосом, результатом которых является анеуплоидия (гетероплоидия). Если анеуплоидия связана с утратой одной хромосомы (формула 2n-1), то принято говорить о моносомии; выпадение пары гомологичных хромосом (2n-2) приводит к нуллисомии; при добавлении к диплоидному набору одной хромосомы (2n + 1) имеет место трисомия. В случаях, когда происходит увеличение набора на две и большее число хромосом (но меньше, чем на гаплоидное число), используется термин "полисемия".

Полиплоидия очень распространена в некоторых группах растений. Получение полиплоидных сортов культурных растений является важной задачей селекционной практики, поскольку с увеличением плоидности повышается хозяйственная ценность таких растений (становятся более крупными листья, стебли, семена, плоды). С другой стороны, полиплоидия довольно редко встречается у раздельнополых животных, так как в этом случае часто нарушается баланс между половыми хромосомами и аутосомами, что приводит к бесплодию индивидуумов либо к летальности (гибели организма). У млекопитающих и человека возникшие полиплоиды, как правило, погибают на ранних этапах онтогенеза.

Анеуплоидии наблюдаются у многих видов организмов, особенно у растений. Трисомии некоторых сельскохозяйственных растений также имеют определенную практическую ценность, тогда как моносомии и нуллисомии часто приводят к нежизнеспособности особи. Анеуплоидии человека являются причиной тяжелой хромосомной патологии, которая проявляется в серьезных нарушениях развития индивидуума, его инвалидности, нередко заканчиваясь ранней гибелью организма на том или ином этапе онтогенеза (летальным исходом). Хромосомные болезни человека более подробно будут рассматриваться в подразд. 7.2.

Причины полиплоидии и анеуплоидии связаны с нарушениями расхождения диплоидного комплекса хромосом (либо хромосом отдельных пар) родительских клеток в дочерние клетки в процессе мейоза или митоза. Так, например, если у человека во время оогенеза возникнет нерасхождение одной пары аутосом материнской клетки с нормальным кариотипом (46,XX), то произойдет образование яйцеклеток с мутантными кариотипами 24 и 22,X. Следовательно, при оплодотворении таких яйцеклеток нормальными сперматозоидами (23,X либо 23,X) могут появиться зиготы (индивидуумы) с трисомией (47,XX либо 47,ХУ) и с моносомией (45,XXлибо 45,XУ) по соответствующей аутосоме. На рис. 5.1 приведена общая схема возможных нарушений оогенеза на этапе размножения первичных диплоидных клеток (при митотическом делении оогоний) либо при созревании гамет (во время деления мейоза), приводящих к возникновению триплоидных зигот (см. рис. 3.4). Аналогичные эффекты будут наблюдаться и при соответствующих нарушениях сперматогенеза.

Если указанные выше нарушения затрагивают митотически делящиеся клетки на ранних этапах эмбрионального развития (эмбриогенеза), то появляются индивидуумы с признаками мозаицизма (мозаики), т.е. имеющие одновременно как нормальные (диплоидные) клетки, так и анеуплоидные (либо полиплоидные) клетки.

В настоящее время известны различные агенты, например, высокие или низкие температуры, некоторые химические вещества, названные "митотическими ядами" (колхицин, гетероауксин, аценафтол и др.), которые нарушают нормальную работу аппарата клеточного деления у растений и животных, препятствуя

нормальному завершению процесса расхождения хромосом в анафазе и телофазе. С помощью таких агентов в экспериментальных условиях получают полиплоидные и анеуплоидные клетки разных эукариот.

Изменения структуры хромосом (структурные аберрации). Структурные аберрации представляют собой внутрихромосомные или межхромосомные перестройки, возникающие при разрывах хромосом под воздействием мутагенов окружающей среды либо как результат нарушений в механизме кроссинговера, приводящих к неправильному (неравноценному) генетическому обмену между гомологичными хромосомами после ферментативного "разрезания" их конъюгирующих участков.

К числу внутрихромосомных перестроек относятся делеции (нехватки), т.е. потери отдельных участков хромосом, дупликации (дубликации), связанные с удвоением тех или иных участков, а также инверсии и нереципрокные транслокации (транспозиции), изменяющие порядок расположения генов в хромосоме (в группе сцепления). Примером межхромосомных перестроек являются реципрокные транслокации (рис. 5.2).

Делеции и дупликации могут изменять численность отдельных генов в генотипе индивидуума, что приводит к нарушению баланса их регуляторных взаимоотношений и соответствующим фенотипическим проявлениям. Значительные по размерам делеции обычно бывают летальными в гомозиготном состоянии, тогда как очень мелкие делеции чаще всего не являются непосредственной причиной гибели гомозигот.

Инверсия возникает в результате полного разрыва двух краев хромосомного участка с последующим поворотом этого участка на 180° и воссоединением разорванных концов. В зависимости от того, включается или не включается центромера в инвертированный участок хромосомы, инверсии подразделяются на перицентрические и парацентрические (см. рис. 5.2). Появляющиеся при этом перестановки в расположении генов отдельной хромосомы (перестройки группы сцепления) также могут сопровождаться нарушениями экспрессии соответствующих генов.

Перестройки, изменяющие порядок и (или) содержание генных локусов в группах сцепления, происходят и в случае транслокаций. Наиболее часто встречаются реципрокные транслокации, при которых наблюдается взаимный обмен предварительно разорванными участками между двумя негомологичными хромосомами. В случае нереципрокной транслокации происходит перемещение (транспозиция) поврежденного участка в пределах той же хромосомы либо в хромосому другой пары, но без взаимного (реципрокного) обмена (см. рис. 5.2).

объяснения механизма таких мутаций. Эти перестройки заключаются в центрическом слиянии двух негомологичных хромосом в одну либо в разделении одной хромосомы на две в результате ее разрыва в области центромеры. Следовательно, такие перестройки могут приводить к изменению числа хромосом в кариотипе, не влияя на общее количество генетического материала в клетке. Полагают, что робертсоновские транслокации являются одним из факторов эволюции кариотипов у разных видов эукариотических организмов.


Как было отмечено ранее, помимо ошибок в системе рекомбинации причиной структурных аберраций обычно являются разрывы хромосом, возникающие при действии ионизирующей радиации, некоторых химических веществ, вирусов и других агентов.

Результаты экспериментального изучения химических мутагенов свидетельствуют о том, что наиболее чувствительными к их воздействию являются гетерохроматиновые участки хромосом (чаще всего разрывы происходят в районе центромеры). В случае ионизирующей радиации такой закономерности не наблюдается.

Базисные термины и понятия: аберрация; анеуплоидия (гетероплоидия); делеция (нехватка); дупликация (дубликация); летальность; "митотические яды"; моносомия; нереципрокная транслокация; нуллисомия; парацентрическая инверсия; перицентрическая инверсия; полиплоидия; полисемия; реципрокная транслокация; робертсоновская транслокация; транспозиция; трисомия; хромосомная мутация.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение