Статическое давление воздуха. Классификация приборов измерения давления. Применение закона бернулли

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Кинетическая энергия движущегося газа:

где m- масса движущегося газа, кг;

с- скорость газа, м/с.

(2)

где V- объём движущегося газа, м 3 ;

- плотность, кг/м 3 .

Подставим (2) в (1), получим:

(3)

Найдём энергию 1 м 3:

(4)

Полное давление складывается из и
.

Полное давление в воздушном потоке равно сумме статического и динамического напоров и представляет собой энергонасыщенность 1 м 3 газа.

Схема опыта для определения полного давления

Трубка Пито- Прандтля

(1)

(2)

Уравнение (3) показывает работу трубки.

- давление в столбе I;

- давление в столбе II.

Эквивалентное отверстие

Если сделать отверстие сечении F e через которое будет подаваться такое же количество воздуха
, как и через трубопровод при том же начальном напореh, то такое отверстие называется эквивалентным, т.е. проход через данное эквивалентное отверстие заменяет все сопротивления в трубопроводе.

Найдём величину отверстия:

, (4)

где с- скорость истечения газа.

Расход газа:

(5)

Из (2)
(6)

Примерно, потому что не учитываем коэффициент сужения струи.

- это условное сопротивление, которое удобно вводить в расчёты при упрощении действительных сложных систем. Потери напора в трубопроводах определяются как сумма потерь в отдельных местах трубопровода и подсчитываются на основании экспериментальных данных, приводящихся в справочниках.

Потери в трубопроводе возникают на поворотах, изгибах, при расширениях и сужениях трубопроводов. Потери в равном трубопроводе также подсчитываются по справочным данным:

    Всасывающий патрубок

    Корпус вентилятора

    Нагнетательный патрубок

    Эквивалентное отверстие, заменяющее реальный трубопровод с его сопротивлением.


- скорость во всасывающем трубопроводе;

- скорость истечения через эквивалентное отверстие;

- величина давления, под которым происходит перемещение газа во всасывающем патрубке;

статический и динамический напоры в выводном патрубке;

- полный напор в нагнетательном патрубке.

Через эквивалентное отверстие газ истекает под давлением, зная, находим.

Пример

Чему равняется мощность двигателя для привода вентилятора, если нам известны предыдущие данные из 5.

С учетом потерь:

где - монометрический коэффициент полезного действия.

где
- теоретический напор вентилятора.

Вывод уравнений вентилятора.

Задано:

Найти:

Решение:

где
- масса воздуха;

- начальный радиус лопатки;

- конечный радиус лопатки;

- скорость воздуха;

- тангенциальная скорость;

- радиальная скорость.

Разделим на
:

;

Секундная масса:

,

;

Секундная работа -мощность отдаваемая вентилятором:

.

Лекция №31.

Характерная форма лопастей.

- окружная скорость;

С – абсолютная скорость частицы;

- относительная скорость.

,

.

Представим наш вентилятор с инерцией В.

В отверстие заходит воздух и по радиусу распыляется со скоростью С r . но мы имеем:

,

где В – ширина вентилятора;

r – радиус.

.

Умножим на U:

.

Подставим
, получим:

.

Подставим значение
для радиусов
в выражение для нашего вентилятора и получим:

Теоретически напор вентилятора зависит от углов (*).

Заменим черези подставим:

Разделим левую и правую часть на :

.

где А иВ – заменяющие коэффициенты.

Построим зависимость:

В зависимости от углов
вентилятор будет менять свой характер.

На рисунке правило знаков совпадает с первым рисунком.

Если от касательной к радиусу по направлению вращения откладывать угол, то этот угол считается положительным.

1) В первом положении: - положителен,- отрицателен.

2) Лопатки II:- отрицателен,- положителен – делается близким к нулю икак правило меньше. Это вентилятор высоко напора.

3) Лопатки III:
равны нулю.В=0 . Вентилятор среднего напора.

Основные соотношения для вентилятора.

,

где с – скорость истечения воздуха.

.

Запишем это уравнение применительно к нашему вентилятору.

.

Разделим левую и правую часть на n:

.

Тогда получим:

.

Тогда
.

При решении для данного случая x=const, т.е. мы получим

Запишем:
.

Тогда:
тогда
- первое соотношение вентилятора (производительности вентилятора относятся друг к другу, как числа оборотов вентиляторов).

Пример:

- Это второе соотношение вентилятора (теоретические напоры вентиляторов относятся как квадраты чисел оборотов).

Если взять тот же пример, то
.

Но мы имеем
.

Тогда получим третье соотношение, если вместо
подставим
. Получаем следующее:

- Это и есть третье соотношение (мощности требуемые на привод вентилятора относится как кубы чисел оборотов).

Для того же примера:

Расчет вентилятора

Данные для расчета вентилятора:

Задаются:
- расход воздуха 3 /сек).

Из конструктивных соображений выбирается и число лопаток – n ,

- плотность воздуха.

В процессе расчета определяются r 2 , d – диаметр всасывающего патрубка,
.

Весь расчет вентилятора производится на основании уравнения вентилятора.

Скребковый элеватор

1) Сопротивление при загрузке элеватора:

G Ц – вес погонного метра цепи;

G Г – вес погонного метра груза;

L – длина рабочей ветви;

f - коэффициент трения.

3) Сопротивление в холостой ветви:

Общее усилие:

.

где - кпд учитывающий число звездочекm ;

- кпд учитывающий число звездочек n ;

- кпд учитывающий жесткость цепи.

Мощность для привода транспортера:

,

где - кпд привода транспортера.

Ковшовые транспортеры

Он громоздкий. Применятся в основном на стационарных машинах.

Швырялка-вентилятор. Применяется на силосных комбайнах и на зерновых. Материя подвергается удельному воздействию. Большой расход мощности при повыш. производительности.

Полотняные транспортеры.

Применяются на обычных жатках

1)
(принцип Даламбера).

На частицу массой m действует сила весаmg , сила инерции
, сила трения.

,

.

Нужно найти х , который равен длине, при которой нужно набрать скорость отV 0 доV , равной скорости транспортера.

,

Выражение 4 замечательно следующим случаем:

При
,
.

При угле
частица может набрать скорость транспортера на путиL , равном бесконечности.

Бункера

Бункера применяются нескольких типов:

    со шнековой выгрузкой

    вибровыгрузной

    бункера со свободным истечением сыпучей среды применяется на стационарных машинах

1. Бункера со шнековой выгрузкой

Производительность шнекового выгружателя:

.

    скребковый элеваторный транспортер;

    распределительный шнек бункер;

    нижний выгружной шнек;

    наклонный выгружной шнек;

- коэффициент заполнения;

n – число оборотов шнека;

t – шаг шнека;

- удельный вес материала;

Д – диаметр шнека.

2. Вибробункер

    вибратор;

  1. выгрузной лоток;

    плоские пружины, упругие элементы;

а – амплитуда колебаний бункера;

С – центр тяжести.

Достоинства – устраняется свободообразование, простота конструкционных оформлений. Сущность воздействия вибрации на сыпучую среду заключается в псевдодвижении.

.

М – масса бункера;

х – его перемещение;

к 1 – коэффициент учитывающий скоростное сопротивление;

к 2 – жесткость рессор;

- круговая частота или скорость вращения вала вибратора;

- фаза установки грузов по отношению к смещению бункера.

Найдем амплитуду бункера к 1 =0:

очень мало

,

- частота собственных колебаний бункера.

,

При такой частоте материал начинает течь. Существует скорости истечения, при которых выгружается бункер за 50 сек .

Копнители. Сбор соломы и половы.

1. Копнители бывают навесные и прицепные, причем они бывают однокамерные и двухкамерные;

2. Измельчители соломы со сбором или разбрасыванием измельченной соломы;

3. Разбрасыватели;

4. Соломопрессы для сбора соломы. Отличают навесные и прицепные.

Обеспечить эффективное функционирование обогрева дома или квартиры помогает сбалансированное рабочее статическое давление в системе отопления. Проблемы с его значением приводят к появлению сбоев в эксплуатации, а также к выходу из строя отдельных узлов или системы в целом.

Важно не допускать существенного колебания, особенно в сторону повышения. Также негативно сказывается разбалансировка в конструкциях, имеющих встроенный циркуляционный насос. Он может вызывать кавитационные процессы (закипание) с теплоносителем.

Базовые понятия

Необходимо учитывать, что давление в системе отопления подразумевает исключительно параметр, при котором учитывается только избыточное значение, без учета атмосферного. Характеристики тепловых приборов учитывают именно эти данные. Расчетные данные берутся исходя из общепринятых округленных констант. Они помогают понять в чем измеряется отопление:

0,1 МПа соответствуют 1 Бар и примерно равно 1 атм

Небольшая погрешность будет при замерах на разных высотах над уровнем моря, но экстремальными ситуациями будем пренебрегать.

В понятие рабочего давления в системе отопления входят два значения:

  • статическое;
  • динамическое.

Статическое давление - это величина, обусловленная высотой столба воды в системе. При расчетах принято принимать, что десятиметровый подъем обеспечивает дополнительно 1 амт.

Динамическое давление нагнетают циркуляционные помпы, перемещая теплоноситель по магистралям. Оно не определяется исключительно параметрами насосов.

Одним из важных вопросов, появляющихся во время проектирования схемы разводки, бывает, какое давление в системе отопления. Для ответа понадобится учесть способ циркуляции:

  • В условиях естественной циркуляции (без водяной помпы) достаточно иметь небольшое превышение над статическим значением, чтобы теплоноситель самостоятельно циркулировал по трубам и радиаторам.
  • Когда определяется параметр для систем с принудительной подачей воды, то его значение в обязательном порядке должно быть значительно выше статического, чтобы по максимуму использовать КПД системы.

При расчетах необходимо учитывать допустимые параметры отдельных элементов схемы, например, эффективную эксплуатацию радиаторов под высоким давлением. Так, чугунные секции в большинстве случаев не способны выдерживать напор более 0,6 МПа (6 атм).

Запуск системы отопления многоэтажного дома не обходится без установленных регуляторов давления на нижних этажах и дополнительных помпах, поднимающих давление, на верхних этажах.

Методика контроля и учета

Чтобы контролировать давление в отопительной системе частного дома или в собственной квартире, необходимо в разводку вмонтировать манометры. Они будут учитывать исключительно превышение значения над атмосферным параметром. В основе их работы использован деформационный принцип и трубка Бредана. Для замеров, используемых в работе автоматической системы, уместными окажутся аппараты, использующие электроконтактный тип работы.

Давление в системе частного дома

Параметры врезки этих датчиков регламентированы Госехнадзором. Даже если не предполагаются какие-либо проверки со стороны контролирующих органов, то желательно соблюдать правила и нормы, чтобы обеспечить безопасную эксплуатацию систем.

Врезка манометра осуществляется посредством трехходовых кранов. Они позволяют выполнять продувку, обнуление либо замену элементов без вмешательства в работу отопления.

Понижение давления

Если давление в системе отопления многоэтажного дома или в системе частного строения падает, то основной причиной в такой ситуации является возможная разгерметизация отопления на каком-то участке. Контрольные замеры проводятся при выключенных циркуляционных насосах.

Проблемный участок необходимо локализовать, а также надо выявить точное место течи и устранить ее.

Параметр давления в многоквартирных домах отличается высоким значением, так как приходится работать с высоким столбом воды. Для девятиэтажки нужно удерживать около 5 атм, при этом в подвале манометр будет показывать цифры в пределах 4-7 атм. На подводе к такому дому общая теплотрасса обязана иметь 12-15 атм.

Рабочее давление в системе отопления частного дома принято удерживать на уровне 1,5 атм с холодным теплоносителем, а при нагреве оно поднимется до 1,8-2,0 атм.

Когда значение у принудительных систем падает ниже 0,7-0,5 атм, то происходит блокировка насосов на прокачку. Если уровень давления в отопительной системе частного дома дойдет до 3 атм, то в большинстве котлов это будет восприниматься как критический параметр, при котором сработает защита, стравливая избыток теплоносителя автоматически.

Повышение давления

Такое событие встречается реже, но к нему также нужно подготовиться. Основной причиной служит проблема с циркуляцией теплоносителя. Вода в какой-то точке практически стоит без движения.

Таблица увеличения объема воды при нагреве

Причины бывают в следующем:

  • происходит постоянная подпитка системы, за счет чего в контур поступает дополнительный объем воды;
  • случается влияние человеческого фактора, за счет которого были на каком-то участке перекрыты задвижки или пропускные краны;
  • бывает, что автоматический регулятор отсекает поступление теплоносителя от катальной, такая ситуация возникает, когда автоматика пытается понизить температуру воды;
  • нечастым случаем является блокирование воздушной пробкой прохода теплоносителя; в этой ситуации достаточно стравить часть воды, удалив воздух через .

Для справки. Что такое кран Маевского. Это устройство для спуска воздуха из радиаторов центрального водяного отопления, которое можно открыть с помощью специального разводного ключа, в крайних случаях - отверткой. В быту именуется краном для выпуска воздуха из системы.

Борьба с перепадами давления

Давление в системе отопления многоэтажного дома, так же как и в собственном доме, можно выдерживать на стабильном уровне без существенных перепадов. Для этого применяют вспомогательное оборудование:

  • система воздухоотводов;
  • расширительные бачки открытого или закрытого типа

  • клапаны аварийного сброса.

Причины возникновения перепадов давления бывают разные. Чаще всего встречается его понижение.

ВИДЕО: Давление в расширительном баке котла

In order to provide you with the best online experience this website uses cookies. Delete cookies

In order to provide you with the best online experience this website uses cookies.

By using our website, you agree to our use of cookies.

Information cookies

Cookies are short reports that are sent and stored on the hard drive of the user"s computer through your browser when it connects to a web. Cookies can be used to collect and store user data while connected to provide you the requested services and sometimes tend not to keep. Cookies can be themselves or others.

There are several types of cookies:

  • Technical cookies that facilitate user navigation and use of the various options or services offered by the web as identify the session, allow access to certain areas, facilitate orders, purchases, filling out forms, registration, security, facilitating functionalities (videos, social networks, etc..).
  • Customization cookies that allow users to access services according to their preferences (language, browser, configuration, etc..).
  • Analytical cookies which allow anonymous analysis of the behavior of web users and allow to measure user activity and develop navigation profiles in order to improve the websites.

So when you access our website, in compliance with Article 22 of Law 34/2002 of the Information Society Services, in the analytical cookies treatment, we have requested your consent to their use. All of this is to improve our services. We use Google Analytics to collect anonymous statistical information such as the number of visitors to our site. Cookies added by Google Analytics are governed by the privacy policies of Google Analytics. If you want you can disable cookies from Google Analytics.

However, please note that you can enable or disable cookies by following the instructions of your browser.

Системы отопления обязательно тестируют на устойчивость к давлению

Из этой статьи вы узнаете, что такое статическое и динамическое давление системы отопления, зачем оно нужно и чем отличается. Также будут рассмотрены причины его повышения и понижения и методы их устранения. Помимо этого, речь пойдет о том, каким давлением испытывают различные системы отопления и способы данной проверки.

Виды давления в отопительной системе

Выделяют два вида:

  • статистическое;
  • динамическое.

Что такое статическое давление системы отопления? Это то, которое создаётся под воздействием силы притяжения. Вода под собственным весом давит на стенки системы с силой пропорциональной высоте, на которую она поднимается. С 10 метров этот показатель равен 1 атмосфере. В статистических системах не задействуют нагнетатели потока, и теплоноситель циркулирует по трубам и радиаторам самотеком. Это открытые системы. Максимальное давление в открытой системе отопления составляет около 1,5 атмосферы. В современном строительстве такие методы практически не применяются, даже при монтаже автономных контуров загородных домов. Это связано с тем, что для такой схемы циркуляции надо применять трубы с большим диаметром. Это не эстетично и дорого.

Динамическое давление в системе отопления можно регулировать

Динамическое давление в закрытой системе отопления создается искусственным повышением скорости потока теплоносителя при помощи электрического насоса. Например, если речь идет о многоэтажках, или крупных магистралях. Хотя, теперь даже в частных домах при монтаже отопления используют насосы.

Важно! Речь идет об избыточном давлении без учета атмосферного.

Каждая из систем отопления имеет свой допустимый предел прочности. Иными словами, может выдержать разную нагрузку. Чтобы узнать какое рабочее давление в закрытой системе отопления, надо к статическому, создаваемому столбом воды, добавить динамическое, нагнетаемое насосами. Для правильной работы системы, показания манометра должны быть стабильными. Манометр – механический прибор, измеряющий силу, с которой вода движется в системе отопления. Он состоит из пружины, стрелки и шкалы. Манометры устанавливаются в ключевых местах. Благодаря им можно узнать какое рабочее давление в системе отопления, а также выявлять неисправности в трубопроводе во время диагностики.

Перепады давления

Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:

  1. расширительный бачок;
  2. клапан аварийного выброса теплоносителя;
  3. воздухоотводы.

Тестирование воздухом – испытательное давление системы отопления повышают до 1,5 бар, затем спускают до 1 бара и оставляют на пять минут. При этом потери не должны превышать 0,1 бар.

Тестирование водой – давление повышают не менее чем до 2 бар. Возможно и больше. Зависит от рабочего давления. Максимальное рабочее давление системы отопления надо умножить на 1,5. За пять минуть потери не должны превышать 0,2 бар.

Панельное

Холодное гидростатическое тестирование – 15 минут с давлением 10 бар, потери не больше 0,1 бара. Горячее тестирование – поднятие температуры в контуре до 60 градусов на семь часов.

Испытывают водой, нагнетая 2,5 бара. Дополнительно проверяют водонагреватели (3-4 бара) и насосные установки.

Тепловые сети

Допустимое давление в системе отопления постепенно повышается до уровня выше рабочего на 1,25, но не меньше 16 бар.

По результатам тестирования составляется акт, который является документом, подтверждающим заявленные в нем эксплуатационные характеристики. К ним, в частности, относиться рабочее давление.

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Реография.

Составитель: Преподаватель

Ковалева Л.В.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы


Жидкости:

Следовательно, А р = A h + A D

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение