Рассчитать вентиляцию онлайн. Расчёт площади воздуховодов и фасонных изделий: планируем вентиляционную систему. Потери на трение

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Залогом безупречной и эффективной работы вентиляции является грамотный расчет площади воздуховодов и фасонных изделий, от которого зависит подбор как отдельных элементов, так и оборудования. Цель расчета - обеспечение оптимальной кратности перемены воздуха в помещениях в соответствии с их назначением.

В статье мы подробно разобрали каждый из обязательных этапов вычислений: определение сечения и фактической площади воздуховодов, расчет скорости воздуха и подбор параметров фасонных изделий. Кроме того, мы обозначили главные требования, предъявляемые к величине вентканалов, а также привели пример расчета воздуховодов для частного дома.

Далее определяют диаметры вентиляционных каналов. Так как 100 м 3 удаляет вытяжка принудительно, то остается распределить оставшиеся 294 м 3 . Они уйдут естественным образом через 2 шахты. На каждую придется: 294: 2 = 147 мᶾ.

Поскольку в шахтах естественной вентиляции скорость воздуха колеблется в пределах от 0,5 до 1,5 м/с, обычно в расчетах берут среднее значение - 1 м/с. Подставив известные величины в формулу S = L: k × V, находят: S = 147: 3600 х 1 = 0,0408 м².

Теперь появилась возможность определить диаметр воздуховода с кругом в сечении по формуле: S = (π x D2) : 400 или 0,0408 = (3,14 х D2) : 400.

Решив это уравнение с одним неизвестным, путем несложных вычислений, находят, что диаметр воздуховода равен 2,28 мм. Под это значение подбирают ближайший больший стандартный размер трубы.

Когда монтируют воздуховод прямоугольного сечения, выбирают его размер по таблице, ориентируясь на площадь. Ближайшее большее значение - 200 х 250 мм.

По такой же схеме определяют площадь сечения отвода под кухонную вытяжку с той разницей, что скорость воздуха здесь равна 3 м/с. S = 100: 3600 х 3 = 0,083 м² или диаметр 107 мм.

Переводная таблица необходима тогда, когда нужно выполнить расчет воздуховодов с прямоугольным сечением и применить при этом таблицу для круглых изделий. Здесь представлены диаметры воздуховодов с кругом в сечении, в которых снижение давления за счет трения равно аналогичному значению в прямоугольной конструкции.

Существует три способа определения эквивалентного значения:

  • по скорости;
  • по поперечному разрезу;
  • по расходу.

Эти величины связаны с разными параметрами воздуховода. Для каждого из них есть индивидуальная методика использования таблиц. Главное, чтобы вне зависимости от примененной методики, величина утраты давления на трение получилась одинаковой.

В заключение проводится проверка скорости: V = 147: (3600 х 0,0408) = 1,0 м/с. Это соответствует допустимому пределу.

Фасонные изделия и их расчет

При прямые участки различных размеров соединяют при помощи фасонных изделий.

При производстве и воздуховодов, и фасонных изделий необходим подсчет их площади. Без этого невозможно определить правильно нужное количество материала для изготовления деталей

К фасонным изделиям относятся:

  1. Отводы . Их используют для изменения направления воздушного трубопровода под всевозможным углом. Бывают как круглыми, так и прямоугольными, овальными.
  2. Переходы . С их помощью соединяют воздуховоды различного сечения. Геометрия любая - от круглой до комбинированной.
  3. Муфты, ниппели . Соединяют прямые отрезки магистрали.
  4. Тройники . Сочленяют разветвления или две ветки воздуховода.
  5. Заглушки . Перекрывают воздушный поток.
  6. Крестовины . Разделяют или соединяют воздушные потоки.
  7. Утки . Обеспечивают разноуровневый переход воздуховода.

Любому фасонному изделию отведена своя особая роль в вентиляционной системе. Производители каждое из них проектируют отдельно. Поставляются они совместно с основными элементами

В таблице представлены стандартные типоразмеры воздуховодов. Даже профессионалы вместо сложных вычислений применяют такие и подобные специальные таблицы

Многие проектировщики пользуются специальными программами, онлайн-калькуляторами. Потребуется только ввести первичные величины и получить на выходе готовые параметры.

Программы позволяют не только определить нужные величины всех деталей, но и сделать их развертку. Такая развертка, отпечатанная на 3D-принтере, позволяет выполнить идеальную подгонку вентиляционных каналов.

Основные требования к расчету

При определении итоговых параметров воздуховодов необходимо учесть, что определение площади воздуховодов должно гарантировать, что:

  1. Обеспечивается температурный режим в помещении. Там, где существует избыток тепла, предусмотрено его удаление, а там, где наблюдается недостаток, сведены к минимуму его потери.
  2. Скорость перемещения воздуха никаким образом не снижает уровень комфорта людей, находящихся в помещении. В районах рабочих зон обязательно присутствует очистка воздуха.
  3. Вредные химсоединения и взвешенные частицы, присутствующие в воздухе, находятся в объеме, соответствующем ГОСТу 12.1.005-88.

Для отдельных помещений обязательным условием подбора площади воздуховодов является постоянное поддержание подпора и исключение подачи воздуха снаружи.

При расчете сопротивления магистрали принимают к учету потери давления. Чтобы во время движения поток воздушной массы смог преодолеть сопротивление, необходимо соответствующее давление

Выводы и полезное видео по теме

Онлайн-программа в помощь инженеру-проектировщику:

Сюжет об организации вентиляции частного дома в целом:

Площадь сечения, форма, длина воздуховода - одни из параметров, определяющих производительность вентсистемы. Правильный расчет крайне важен, т.к. от него зависит воздухопропускная способность, а также скорость потока и эффективная работа конструкции в целом.

При использовании онлайн-калькулятора, степень точности расчета будет выше, чем при подсчете ручном. Такой результат объясняется тем, что программа автоматически сама округляет величины к более точным.

Для передачи приточного или вытяжного воздуха от вентиляционных установок в гражданских или производственных зданиях применяются воздухопроводы различной конфигурации, формы и размера. Зачастую их приходится прокладывать по существующим помещениям в самых неожиданных и загроможденных оборудованием местах. Для таких случаев правильно рассчитанное сечение воздуховода и его диаметр играют важнейшую роль.

Факторы, оказывающие влияние на размеры воздухопроводов

На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.

Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:

  1. Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал.
  2. Пропускная способность также зависит от скорости воздуха (м/с). Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки. Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.
  3. Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.

В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.

Таблица 1

Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.

Воздуховоды производят не только круглой, но и прямоугольной и овальной формы. Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.

Вернуться к оглавлению

Расчет габаритов воздухопровода

Сначала необходимо определиться с количеством приточного или вытяжного воздуха, которое требуется доставить по каналу в помещение. Когда эта величина известна, площадь сечения (м 2) рассчитывают по формуле:

В этой формуле:

  • ϑ – скорость воздуха в канале, м/с;
  • L – расход воздуха, м 3 /ч;
  • S – площадь поперечного сечения канала, м 2 ;

Для того чтобы связать единицы времени (секунды и часы), в расчете присутствует число 3600.

Диаметр воздуховода круглого сечения в метрах можно высчитать исходя из площади его сечения по формуле:

S = π D 2 / 4, D 2 = 4S / π, где D – величина диаметра канала, м.

Порядок расчета размера воздухопровода следующий:

  1. Зная расход воздуха на данном участке, определяют скорость его движения в зависимости от назначения канала. В качестве примера можно принять L = 10 000 м 3 /ч и скорость 8 м/с, так как ветка системы – магистральная.
  2. Вычисляют площадь сечения: 10 000 / 3600 х 8 = 0.347 м 2 , диаметр будет – 0,665 м.
  3. По нормали принимают ближайший из двух размеров, обычно берут тот, который больше. Рядом с 665 мм есть диаметры 630 мм и 710 мм, следует взять 710 мм.
  4. В обратном порядке производят расчет действительной скорости воздушной смеси в воздухопроводе для дальнейшего определения мощности вентилятора. В данном случае сечение будет: (3.14 х 0.71 2 / 4) = 0.4 м 2 , а реальная скорость – 10 000 / 3600 х 0.4 = 6.95 м/с.
  5. В том случае если необходимо проложить канал прямоугольной формы, его габариты подбирают по рассчитанной площади сечения, эквивалентного круглому. То есть высчитывают ширину и высоту трубопровода так, чтобы площадь равнялась 0.347 м 2 в данном случае. Это может быть вариант 700 мм х 500 мм или 650 мм х 550 мм. Такие воздухопроводы монтируют в стесненных условиях, когда место для прокладки ограничено технологическим оборудованием или другими инженерными сетями.

Вентиляция играет важнейшую роль в создании оптимального микроклимата в жилище. Правильно сконструированная вентиляционная система обеспечивает вывод за пределы помещения загрязненного воздуха, вредных газов, паров и пыли, которые влияют на здоровье людей, находящихся в жилом помещении. При проектировании вентиляционных систем производится огромное количество расчетов, в которых учитывается множество факторов и переменных.

В производительности вентиляционной системы не последнюю роль играю воздуховоды, а именно их длина, сечение и форма. Крайне важно чтобы расчет сечения воздуховодов был произведен правильно, так как именно от этого будет зависеть, сможет ли система воздуховодов пропускать достаточное количество воздуха, скорость воздушного потока и бесперебойная работа вентиляционной системы в целом. Благодаря грамотному расчету площади воздушных каналов, вибрация и аэродинамические шумы, производимые воздушными потоками, будут находиться в пределах допустимой нормы.

  • Обратиться к профессионалам. Расчет будет произведен качественно, но дорого.
  • Сделать самостоятельный расчет, используя формулы расчета удельных потерь воздуха, гравитационного подпора, поперечного сечения воздуховодов, формулу скорости движения воздушных масс в газоходах, определение потерь на трение и сопротивление.
  • Воспользоваться онлайн-калькулятором.

Расчет сечения воздуховода

Комментариев:

  • Факторы, оказывающие влияние на размеры воздухопроводов
  • Расчет габаритов воздухопровода
  • Подбор габаритов под реальные условия

Для передачи приточного или вытяжного воздуха от вентиляционных установок в гражданских или производственных зданиях применяются воздухопроводы различной конфигурации, формы и размера. Зачастую их приходится прокладывать по существующим помещениям в самых неожиданных и загроможденных оборудованием местах. Для таких случаев правильно рассчитанное сечение воздуховода и его диаметр играют важнейшую роль.

Факторы, оказывающие влияние на размеры воздухопроводов

На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.

Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:

  1. Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал.
  2. Пропускная способность также зависит от скорости воздуха (м/с). Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки . Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.
  3. Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.

В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.

Таблица 1

Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.

Воздуховоды производят не только круглой, но и прямоугольной и овальной формы. Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.

Вернуться к оглавлению

Расчет габаритов воздухопровода

Сначала необходимо определиться с количеством приточного или вытяжного воздуха, которое требуется доставить по каналу в помещение. Когда эта величина известна, площадь сечения (м 2) рассчитывают по формуле:

В этой формуле:

  • ϑ – скорость воздуха в канале, м/с;
  • L – расход воздуха, м 3 /ч;
  • S – площадь поперечного сечения канала, м 2 ;

Для того чтобы связать единицы времени (секунды и часы), в расчете присутствует число 3600.

Диаметр воздуховода круглого сечения в метрах можно высчитать исходя из площади его сечения по формуле:

S = π D 2 / 4, D 2 = 4S / π, где D – величина диаметра канала, м.

Порядок расчета размера воздухопровода следующий:

  1. Зная расход воздуха на данном участке, определяют скорость его движения в зависимости от назначения канала. В качестве примера можно принять L = 10 000 м 3 /ч и скорость 8 м/с, так как ветка системы – магистральная.
  2. Вычисляют площадь сечения: 10 000 / 3600 х 8 = 0.347 м 2 , диаметр будет – 0,665 м.
  3. По нормали принимают ближайший из двух размеров, обычно берут тот, который больше. Рядом с 665 мм есть диаметры 630 мм и 710 мм, следует взять 710 мм.
  4. В обратном порядке производят расчет действительной скорости воздушной смеси в воздухопроводе для дальнейшего определения мощности вентилятора. В данном случае сечение будет: (3.14 х 0.71 2 / 4) = 0.4 м 2 , а реальная скорость – 10 000 / 3600 х 0.4 = 6.95 м/с.
  5. В том случае если необходимо проложить канал прямоугольной формы , его габариты подбирают по рассчитанной площади сечения, эквивалентного круглому. То есть высчитывают ширину и высоту трубопровода так, чтобы площадь равнялась 0.347 м 2 в данном случае. Это может быть вариант 700 мм х 500 мм или 650 мм х 550 мм. Такие воздухопроводы монтируют в стесненных условиях, когда место для прокладки ограничено технологическим оборудованием или другими инженерными сетями.

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение Pтр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v y g - ускорение свободного падения (9,8 м/с2).

Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  1. Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  2. Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  3. Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  4. Вычисляем потери давления на трение Pтр.
  5. По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  6. Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение Основное требование
Бесшумность Мин. потери напора
Магистральные каналы Главные каналы Ответвления
Приток Вытяжка Приток Вытяжка
Жилые помещения 3 5 4 3 3
Гостиницы 5 7.5 6.5 6 5
Учреждения 6 8 6.5 6 5
Рестораны 7 9 7 7 6
Магазины 8 9 7 7 6

Примечание: скорость воздушного потока в таблице дана в метрах в секунду.

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции.

  1. В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  2. По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  3. Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  4. Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.
  5. Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.
Диаграмма определения потерь напора и диаметра воздуховодов
Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения , то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Замечания:

  1. Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды.
  2. Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты). В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.
Таблица эквивалентных диаметров воздуховодов
Размеры 150 200 250 300 350 400 450 500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
1800 870 935 990

Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в должна обеспечивать выполнение существующих норм.

Что учитывается при определении скорости движения воздуха

Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?

Уровень шума в помещении

В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.

Таблица 1. Максимальные значения уровня шума.

Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещении Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.

Таблица 2. Максимальные показатели допустимой вибрации.


При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.

Значения по скорости движения потока, влажности и температуре содержатся в таблице.

Таблица 3. Параметры микроклимата.


Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.

Таблица 4. Кратность воздухообмена в различных помещениях.

Бытовые
Бытовые помещения Кратность воздухообмена
Жилая комната (в квартире или в общежитии) 3м 3 /ч на 1м 2 жилых помещений
Кухня квартиры или общежития 6-8
Ванная комната 7-9
Душевая 7-9
Туалет 8-10
Прачечная (бытовая) 7
Гардеробная комната 1,5
Кладовая 1
Гараж 4-8
Погреб 4-6
Промышленные
Промышленные помещения и помещения большого объема Кратность воздухообмена
Театр, кинозал, конференц-зал 20-40 м 3 на человека
Офисное помещение 5-7
Банк 2-4
Ресторан 8-10
Бар, Кафе, пивной зал, бильярдная 9-11
Кухонное помещение в кафе, ресторане 10-15
Универсальный магазин 1,5-3
Аптека (торговый зал) 3
Гараж и авторемонтная мастерская 6-8
Туалет (общественный) 10-12 (или 100 м 3 на один унитаз)
Танцевальный зал, дискотека 8-10
Комната для курения 10
Серверная 5-10
Спортивный зал не менее 80 м 3 на 1 занимающегося и не менее 20 м 3 на 1 зрителя
Парикмахерская (до 5 рабочих мест) 2
Парикмахерская (более 5 рабочих мест) 3
Склад 1-2
Прачечная 10-13
Бассейн 10-20
Промышленный красильный цел 25-40
Механическая мастерская 3-5
Школьный класс 3-8

Алгоритм расчетов Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.

Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.


Самостоятельный расчет

К примеру, в помещении объемом 20 м 3 согласно требованиям для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:

V – скорость потока воздуха в м/с;

L – расход воздуха в м 3 /ч;

S – площадь сечения воздуховодов в м 2 .

Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:

В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.

С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.

L = 3600×S (м 3)×V(м/с). Объем (расход) получается в квадратных метрах.

Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.

По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.

Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.

Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:


После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.

Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток . Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.

Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.

Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.

Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.

Тип и место установки воздуховода и решетки Вентиляция
Естественная Механическая
Воздухоприемные жалюзи 0,5-1,0 2,0-4,0
Каналы приточных шахт 1,0-2,0 2,0-6,0
Горизонтальные сборные каналы 0,5-1,0 2,0-5,0
Вертикальные каналы 0,5-1,0 2,0-5,0
Приточные решетки у пола 0,2-0,5 0,2-0,5
Приточные решетки у потолка 0,5-1,0 1,0-3,0
Вытяжные решетки 0,5-1,0 1,5-3,0
Вытяжные шахты 1,0-1,5 3,0-6,0

Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.

Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса . Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.

В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.

Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:

  1. Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов , так и из технического задания заказчиков.
  2. Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.

Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.

От автора: здравствуйте, уважаемые читатели! Система вентиляции - это очень важная составляющая обустройства любого дома. Ведь именно благодаря ей вы дышите свежим, а не застоявшимся воздухом. Это оказывает значительное положительное влияние как на здоровье проживающих в доме людей, так и на уровень их комфорта.

Но все эти преимущества актуальны, конечно, для тех случаев, когда работает корректно. В частности, очень важна ее производительность, которая должна быть достаточной для конкретного здания. Для обеспечения необходимого показателя важно правильно выбрать оборудование нужной мощности, а также сделать расчет сечения воздуховода вентиляции.

Необходимость расчетов

Все расчеты для обустройства вентиляции как в частном доме, так и в квартире должны быть выполнены максимально тщательно. Это связано с тем, что некачественный воздухообмен способен привести к довольно тяжелым последствиям. Среди них можно выделить:

  • дискомфорт проживающих в доме людей. В душном помещении тяжело находиться. К тому же, все неприятные запахи застаиваются, поскольку у них просто нет шанса выйти наружу. В итоге ими пропитывается и мебель, и отделка комнат. Понятно, что такое жилище не вызывает приятных ощущений;
  • вред для здоровья. В отработанном воздухе содержится большое количество углекислого газа. Если долго находиться в такой атмосфере, то на организме это сказывается не лучшим образом. У людей возникает быстрая утомляемость, начинает часто болеть голова. Да и общее состояние здоровья рано или поздно ухудшается;
  • повышенный уровень влажности. Для его регулировки необходим качественный воздухообмен, а когда с последним проблемы, результат становится очевиден. Следствием такого положения вещей является неприятный конденсат на окнах, да и дышать в помещении с повышенным уровнем влажности тяжелее, чем обычно. Кроме того, такая ситуация приведет к появлению плесени и грибка на стенах. Избавиться от таких «соседей» очень и очень непросто. А не избавляться нельзя - споры, выделяемые плесенью, попадают в легкие проживающих в доме людей. Это провоцирует развитие различных инфекций, некоторые из них являются опасными для жизни.

Проведение расчетов

Теперь, когда вы убедились в крайней необходимости расчетов, можно поговорить о том, как они производятся. Но прежде всего стоит разобраться, какие факторы влияют на конечный показатель. Собственно, все они относятся к типу самого воздуховода.

Разновидности воздуховодов

Воздуховоды различаются по двум параметрам. Первый - это материал, из которого изготовлен данный элемент конструкции. Существует довольно много современных вариантов. Воздуховоды могут быть:

  • стальными (из черного или нержавеющего металла);
  • пластиковыми;
  • алюминиевыми;
  • тканевыми;
  • жестяными.

При этом важное значение имеет структура материала. Чем более шершавая поверхность внутри трубы, тем больше усилий приходится прилагать воздуху для прохождения по соответствующему маршруту, поскольку сопротивление возрастает. Этот фактор напрямую влияет на требуемый показатель сечения.

Вторым параметром является форма воздуховода. Он может быть круглым, квадратным, овальным или прямоугольным. Каждая форма обладает определенными преимуществами и недостатками. Например, для круглых разновидностей необходимо меньше материала на изготовления, что выгодно с экономической точки зрения. Прямоугольные воздуховоды могут быть не слишком габаритными как в высоту, так и в ширину - все равно площадь их сечения будет выдержана на уровне необходимой.

Способы расчетов

Строго говоря, проведением расчетов, необходимых для обустройства и других видов вентиляции, должны заниматься специализированные организации, имеющие соответствующую лицензию. У профессионалов есть полный набор необходимых знаний и опыта. Обычному же человеку зачастую сложно понять, как правильно рассчитать тот или иной параметр.

Но стремление к экономии и любовь к самостоятельным работам никуда не делись, поэтому многие предпочитают все же разобраться в этом вопросе. Если вы относитесь именно к такой категории людей, то запаситесь терпением и блокнотом с ручкой.

Для расчета поперечного сечения воздуховода есть два способа. Один из них основан на допустимых скоростях, другой - на постоянной потере давления. оба они дают необходимый параметр, но более простым является первый. Так что лучше начать именно с него.

Все здания и помещения подразделяются на различные категории. В зависимости от типа строения, для него предусмотрено определенное нормированное значение максимально допустимой скорости, причем как для основного воздуховода, так и для идущих от него ответвлений.

Соответственно, для проведения расчетов вам понадобятся эти стандартные показатели. А также необходимо иметь под рукой план с указанием всех входящих в нее маршрутов и типов установленного оборудования. Именно на этих заготовках и будет основан процесс дальнейшей работы.

Что касается нормированных показателей максимально допустимой скорости, то их можно свести в следующий список:

  • производственные помещения - для основной магистрали допустима скорость от 6 до 11 метров в секунду, для ответвлений от 4 до 9 метров в секунду;
  • офисные помещения - для основной магистрали от 3,5 до 6 м/с, для ответвлений от 3 до 6,5 м/с;
  • жилые помещения - для основной магистрали от 3,5 до 5 м/с, для ответвлений от 3 до 5 м/с.

Эти нормы обусловлены тем, что превышающая их скорость воздушного потока будет создавать высокий уровень шума, который сделает нахождение людей в помещении весьма некомфортным.

Итак, процесс расчета сводится к следующим шагам.

  1. Составляется схема вентиляционной системы. На ней указывается каждая магистраль и идущие от нее ответвления. Также обозначается все оборудование, которое установлено в воздуховодах. К нему относятся диффузоры, клапаны, решетки и тому подобное. Также следует обозначить все повороты воздуховода.
  2. Далее необходимо рассчитать, какой объем воздуха должен поступать в помещение ежечасно. Этот параметр зависит в первую очередь от количества людей, находящихся в комнате в течение длительного времени. Объем воздуха на каждого человека утвержден нормами СНиП. В них указано, что в помещении, где не производится естественное проветривание, расход воздуха на одного человека составляет не менее 60 м 3 /ч. Если речь идет о спальне, то там показатель меньше - всего 30 м 3 /ч. Это обусловлено тем, что во время сна человек перерабатывает меньшее количество кислорода. В общем, для расчета необходимо учесть количество человек, подолгу пребывающих в доме, и умножить это число на установленный нормами показатель. Если у вас регулярно собираются большие компании, то на них ориентироваться не нужно - нормативы актуальны только для длительного пребывания. На такой случай вы можете обзавестись VAV-системой, которая поможет регулировать воздухообменные процессы между помещениями во время приема гостей.
  3. После того как вы получили оба показателя - то есть максимально допустимую скорость и необходимый объем поступающего в помещение воздуха - можно браться за вычисление расчетной площади воздуховода. Для этого можно использовать схему, называемую номограммой. Как правило, она идет в комплекте к гибкой трубе воздуховода. Если ее нет в бумажном варианте, то можно поискать на сайте компании, которая выпустила данную продукцию. Помимо номограммы, можно высчитать необходимый показатель и вручную. Для этого нужно подставить имеющиеся параметры в формулу: Sс=L*2,778/V. Под Sc подразумевается, собственно, та самая площадь воздуховода. Она будет выражена в квадратных сантиметрах, поскольку с таким значением наиболее удобно работать. Буква L означает рассчитанный ранее необходимый объем воздуха, поступающего в помещение через воздуховод. Буква V - это скорость потока воздуха в конкретной магистрали. Число 2,778 является коэффициентом, необходимым для согласования различных типов единиц измерения: м 3 /ч, м/с и см 2 .
  4. Теперь можно браться за вычисление фактической площади сечения воздуховода. Для этого существует две формулы. То, какую из них использовать, зависит от формы трубы. Для круглого воздуховода: S=π*D²/400. Под S подразумевается вычисляемая площадь сечения, под D - диаметр трубы. Для прямоугольного варианта формула выглядит следующим образом: S=A*B/100. При этом буква А означает ширину трубы, а буква В - высоту. Размеры сторон прямоугольника и диаметр круга указываются в миллиметрах.

Таким образом необходимо рассчитать соответствующий показатель для каждого участка вентиляционной системы: как для основных магистралей, так и для дополнительных маршрутов. На основании этих показателей можно перейти к вычислению необходимой мощности оборудования, устанавливаемого для принудительного притока или оттока воздуха.

Для грамотного подбора встраиваемого вентилятора вам понадобится знать еще и показатель падения давления в вентиляционной системе. Этот параметр можно высчитать все по той же номограмме, которой вы пользовались для определения объема воздуха.

Уважаемые читатели! Все расчеты, необходимые для обустройства любого типа вентиляционной системы, в принципе, не так уж сложны. Но они требуют довольно большого количества времени, а также внимательного отношения. Просчет может привести к тому, что вы установите слишком узкий или широкий воздуховод, или же подберете вентиляционное оборудование с мощностью, не соответствующей потребностям помещения.

Поэтому, если вы не уверены в своих силах или твердо знаете об имеющихся проблемах с физикой и математикой, то лучше все же обратиться к специалистам. Это не слишком сильно ударит по бюджету, а взамен даст гарантию того, что вентиляционная система будет работать с должной функциональностью.

Если вы все же решительно настроены на самостоятельное проведение расчетов, то посмотрите еще и видео-инструкцию, ссылка на которую оставлена чуть ниже. Подходите к делу аккуратно и внимательно, тогда у вас все прекрасно получится. Успехов вам, комфорта вашему дому! До новых встреч!



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии