Потенциал действия, его фазы и механизмы генерации. Механизм возникновения потенциала действия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Форма потенциала действия позволяет разделить процесс его генерации на несколько фаз: предспайк, быстрая деполяризация, реполяризация и следовые потенциалы (рис. 2.3).

Рис. 2.3.

Предспайк - это процесс медленной деполяризации мембраны, который начинается с первого отклонения от потенциала покоя и заканчивается достижением КУД. Предспайк включает пассивную деполяризацию мембраны и активный локальный ответ. Активный ответ возникает, когда пассивная деполяризация мембраны достигает 70-80% от значений КУД и является первым проявлением начинающегося активного состояния мембраны - началом ее возбуждения. Благодаря пассивной деполяризации и локальному активному ответу сдвиг потенциала на мембране достигает критического уровня деполяризации, при котором и развивается собственно ПД.

Фаза быстрой (лавинообразной) деполяризации мембраны является первой фазой ПД. На этой стадии мембранный потенциал быстро сдвигается от критического уровня деполяризации до нуля и продолжает смещаться вплоть до пика Г1Д, перезаряжая мембрану. Во время первой фазы ПД потенциал на мембране «извращается», т.е. мембрана разряжается до нуля и перезаряжается с противоположным знаком. Участок ПД со значениями от нуля до пика перезарядки носит название овершут (англ, overshoot) потенциала. Вместо отрицательных значений потенциал на мембране становится положительным. У гигантского аксона кальмара пик ПД достигает значений порядка +50 мВ, а фаза деполяризации с овер- шутом длится порядка 0,5 мс.

Фаза реполяризации является второй фазой ПД. Во время этой фазы значение потенциала на мембране возвращается к исходному значению, т.е. к потенциалу покоя. Эта фаза может быть подразделена на быструю реполяризацию от +50 мВ до 0 В и более медленную реполяризацию - от 0 В до КУД и далее до потенциала покоя. Фаза реполяризации занимает 1-2 мс.

Следовые потенциалы могут в ряде случаев развиваться в конце ПД в виде медленной деполяризации или даже медленной гиперполяризации. Следовая гиперполяризация наблюдается, в частности, на мембране гигантского аксона кальмара.

Ионная природа фаз потенциала действия была изучена в ходе экспериментов на гигантских аксонах кальмара Ходжкиным и Хаксли. Выяснилось, что в момент генерации ПД электрическое сопротивление мембраны аксона на период 1-2 мс снижается в 20-30 раз, г.е. резко возрастает проводимость мембраны, и через мембрану начинает протекать ток. Но какой это ток? Оказалось, что если удалить катионы Na + из наружного раствора и заменить их на сахарозу, то амплитуда потенциала действия резко уменьшается либо ПД вообще не возникает. Это позволило сделать заключение, что главной причиной генерации ПД и перезарядки мембраны до положительных значений является возникновение высокой проницаемости мембраны к катионам натрия и быстрый вход этих катионов внутрь клетки.

Движение натрия внутрь происходит под действием двух сил. Первая сила связана с наличием трансмембранного концентрационного градиента катионов натрия. Концентрация натрия в наружном растворе в 20-30 раз больше, чем внутри, т.е. концентрационный градиент для Na + направлен внутрь клетки, и при наличии достаточной проницаемости катионы натрия будут быстро входить в клетку. Вторая сила связана с наличием большого отрицательного заряда на внутренней стороне мембраны (порядка -70 мВ). Отрицательный заряд на внутренней стороне мембраны будет способствовать входу положительно заряженных катионов натрия в клетку. Входя, катионы натрия будут сначала стремительно уменьшать отрицательный заряд мембраны до нуля, а потом перезаряжать мембрану до положительных значений, приближая величину мембранного потенциала к равновесному потенциалу для Na + . Напомним, что равновесный потенциал для катионов Na" может быть рассчитан по уравнению Нернста и составляет для гигантского аксона кальмара +55 мВ.

В пользу участия входящего натриевого тока в создании деполяриза- ционной фазы ПД свидетельствуют результаты экспериментов с тетродо- токсином - блокатором потенциал-зависимой натриевой проницаемости. Тетродотоксин способен полностью блокировать развитие Г1Д (рис. 2.4, а).

Рис. 2.4. Изменения ПД, возникающие при действии на мембрану избирательных блокаторов натриевой проницаемости - тетродотоксина (я) или калиевой проницаемости - тетраэгиламмония (б)

Таким образом, натриевая гипотеза удовлетворительно объясняет развитие деполяризационной фазы ПД, но оставляет открытым вопрос о причинах рсиоляризации, т.е. фазы ПД, приводящей к возврату мембранного потенциала к уровню потенциала покоя. Было высказано предположение, что на мембране развивается еще один процесс - возрастает ее проницаемость к ионам калия. Было ясно, что это - особая активная калиевая проницаемость, отличающаяся от пассивной калиевой проницаемости, существующей у мембраны в покое (пассивной калиевой утечки). Дополнительная калиевая проницаемость мембраны возникает только в ответ на деполяризацию мембраны до критического уровня, причем с небольшим запаздыванием по сравнению с увеличением натриевой проницаемости. В случае возникновения такой дополнительной активной проницаемости к калию катионы К* начинают выходить из клетки под действием концентрационного градиента и заряда на мембране, созданного опережающим входом катионов натрия. Входящие катионы Na + заряжают внутреннюю сторону мембраны положительно, а наружную - отрицательно. Дополнительный выходящий ток катионов калия будет уменьшать созданный натриевым током положительный заряд внутри клетки и возвращать электрический заряд па мембране к исходным значениям, т.е. к потенциалу покоя.

В пользу участия выходящего калиевого тока в создании реполяризаци- онной фазы ПД свидетельствовали результаты экспериментов с использованием блокатора активной калиевой проницаемости - тетраэтиламмония. Тетраэтиламмоний резко замедляет протекание фазы реполяризации ПД (рис. 2.4, б).

Если ПД является результатом появления и развития на мембране двух новых ионных токов, которых не было в покое, а именно токов натрия и калия, то, следовательно, при деполяризации на мембране открываются новые потенциал-активируемые ионные каналы. Эти каналы проводят сначала натрий, а затем - калий. Свойства таких каналов можно понять, анализируя развитие токов, которые возникают при их работе. Но эти токи надо регистрировать «в чистом виде», т.е. не осложненные одновременными изменениями потенциала на мембране и емкостными токами мембраны. Для этого Ходжкиным и Хаксли в их экспериментах на гигантских аксонах кальмара впервые был использован метод фиксации потенциала на мембране (англ, voltage-clamp).

Метод фиксации потенциала на мембране заключается в подключении к мембране аксона системы двух усилителей. Один усилитель предназначен для регистрации сдвигов мембранного потенциала, второй работает по принципу отрицательной обратной связи. В аксон вводятся два проволочных микроэлектрода. Один из них измеряет сдвиги мембранного потенциала и передает их на усилитель с отрицательной обратной связью. Этот усилитель (отслеживающий сдвиги потенциала на мембране и генерирующий токи) на выходе соединяют со вторым внутриклеточным микроэлектродом - токовым. Через этот микроэлектрод будет подаваться ток, который можно измерять во внешней цепи индифферентного электрода, расположенного снаружи аксона.

Если теперь искусственно деполяризовать мембрану до КУД, то в ответ через возбужденную мембрану начинают течь потенциал-активируемые токи: натриевый и калиевый. Создаваемые этими токами сдвиги мембранного потенциала мгновенно отслеживаются при помощи усилителя обратной связи, посылающего через токовый микроэлектрод равные по амплитуде, но противоположно направленные токи, - возникает обратная связь. Такие «токи фиксации» удерживают (фиксируют) мембрану от сдвигов потенциала и являются, по существу, зеркальным отражением Na + - и К + -токов. Токи фиксации могут быть легко измерены во внешней цепи схемы (рис. 2.5).


Рис. 2.5.

(voltage-clamp ):

при помощи усилителя обратной связи токовый электрод пропускает ток фиксации, являющийся зеркальным отражением трансмембранных токов

На рис. 2.6 приведены данные, полученные с применением метода фиксации потенциала. При деполяризации мембраны от -65 до -9 мВ мембрана возбуждается, что сопровождается генерацией двухфазного тока. Видно, что сначала возникает быстрый входящий ток, который затухает и сменяется на более медленно развивающийся выходящий ток. Оказалось, что входящий ток можно полностью заблокировать с помощью тетродоток- сина - избирательного блокатора потенциал-зависимых натриевых каналов. Из этого следует, что входящий ток - натриевый ток.

Выходящий ток, также возникавший в ответ на деполяризацию, при этом сохраняется и выявляется в чистом виде. Этот ток развивается с небольшой задержкой, нарастает медленнее, но зато не затухает и сохраняется в течение всего времени деполяризации. Он полностью блокируется блокатором потенциал-активируемых калиевых каналов тетраэтилам- монием и, следовательно, представляет собой потенциал-активирусмый К + -ток. Таким образом, с помощью метода фиксации потенциала и использования избирательных блокаторов натриевого и калиевого токов удалось разделить и выявить по отдельности два тока, возникающих при генерации ПД, показать их независимость друг от друга и проанализировать каждый из них.

Рис. 2.6.

а - смещение мембранного потенциала на 56 мВ и фиксация его на уровне -9 мВ;

6 - двухфазный (ранний входящий и поздний выходящий) ток в ответ на фиксацию потенциала на уровне -9 мВ; в - фармакологическое разделение двух токов с помощью блокаторов натриевой (тетродотоксин) и калиевой (тетраэтиламмоний)

Потенциал действия

Физической основой возбуждения является потенциал действия. По сути своей потенциал действия представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки). В результате наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса.

Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка?70 - ?90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация) или положительную (деполяризация) сторону.

Для конкретики рассмотрим нервные клетки. В нервной ткани потенциал действия, как правило, возникает при деполяризации. По степени деполяризации раздражители могут быть подпороговыми, пороговыми и сверхпороговыми. При воздействии подпороговых раздражителей возникает так называемый локальный ответ - местная незначительная деполяризация мембраны, характеризуемая такими свойствами, как декрементность, суммация и градуальность.

Если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его (пороговый и сверхпороговый раздражители), клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала - потенциал действия (рис. 3). Это обусловлено тем, что на мембране клетки находятся ионные каналы. Мембрана клеток возбудимых тканей (нервной, секреторной и мышечной) содержит большое количество потенциалзависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциалзависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны.

Рис. 3.

Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны. Поток ионов натрия вызывает ещё большее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

По достижении значения мембранного потенциала 0 мВ деполяризация продолжается, переходя в стадию реверсии (перезарядки). В этот момент в формирование ПД включаются калиевые потенциал - зависимые каналы (медленные относительно натриевых), а натриевые каналы переходят в инактивированное состояние (закрываются). При достижении мембранного потенциала пикового значения - около 30 мВ - происходит нарастание восстановление его значения - реполяризация, обусловленная током ионов К в противоположную относительно Na сторону (из клетки по градиенту концентрации в межклеточную среду). При достижении исходного значения мембранного потенциала происходит непродолжительная гиперполяризация, обусловленная током ионов Cl в клетку (рис. 4).

Рис. 4.

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

При подробном рассмотрении ПД можно выделить 6 фаз его развития (рис. 5).

1. Медленная деполяризация - от МП до критического уровня деполяризации (КУД), по сути представляет собой локальный ответ на пороговый раздражитель.

2. Быстрая деполяризация - от КУД до 0 мВ, вызвана лавинообразным потоком ионов Naв клетку.

3. Реверсия (овершут, перехлест) - от 0 мВ до пика деполяризации, открываются K каналы, Naканалы инактивируются.

4. Быстрая реполяризация - от пика деполяризации до КУД, вызвана током ионов K из клетки.

5. Медленнаяреполяризация - от КУД до МП.

6. Гиперполяризация - перехлест через МП с восстановлением его значения, вызвана током ионов Clв клетку.


Рис. 5.

Рефрактерность и возбудимость

Инактивация натриевой системы в процессе генерации потенциала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности. Постепенное восстановление потенциала покоя в процессе реполяризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности (в фазу медленной реполяризации), или экзальтации (в фазу медленной деполяризации). И наконец, фаза гиперполяризации снижает возбудимость и проявляется в виде субнормального периода.

Продолжительность периода абсолютной рефрактерности ограничивает максимальную частоту генерации потенциалов действия данным типом клеток. Например, при продолжительности периода абсолютной рефрактерности 4 мс максимальная частота равна 250 Гц.

Рис. 6.

Н. Е. Введенский ввел понятие лабильности, или функциональной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительностью периода рефрактерности. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.

В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания.

На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление.

Стадия покоя . Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ.

Фаза деполяризации . В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его.

Фаза реполяризации . В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны.

Временной ход потенциала действия в нейроне ; показаны последовательные фазы потенциала действия, описанные в тексте.

Для более полного понимания факторов , являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов.

Электроупавляемые натриевые и калиевые каналы . Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na + /K + -насосу и каналам К + /Na + -утечки.

Электроуправляемый натриевый канал . В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна.

Активация натриевого канала . Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз.

Инактивация натриевого канала . В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации.

Существует другая важная характеристикая процесса инактивации натриевого канала : инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.


Потенциал действия клетки рабочего миокарда .
Быстрое развитие деполяризации и продолжительная реполяризация. Замедленная реполяризация (плато) переходит в быструю реполяризацию.

Вернуться в оглавление раздела "

  • Лекция 3. Механизмы проведения возбуждения
  • 3.2. Нервно-мышечный синапс: строение, механизм проведения возбуждения, особенности проведения возбуждения в синапсе по сравнению с нервным волокном.
  • Лекция 4. Физиология мышечного сокращения
  • Лекция 5. Общая физиология центральной нервной системы
  • 5.3. Классификация синапсов цнс, медиаторы синапсов цнс и их функциональное значение. Свойства синапсов цнс.
  • Лекция 6. Структура цнс. Свойства нервных центров.
  • 6. 1. Понятие о нервном центре. Свойства нервных центров.
  • 6.2. Методы исследования функций цнс.
  • Лекция 7. Механизмы и способы торможения в цнс. Координационная деятельность цнс.
  • 7.1. Процессы торможения в цнс: механизм постсинаптического и пресинаптического торможений, посттетаническое и пессимальное торможение. Значение торможения.
  • 7.2. Координационная деятельность цнс: понятие о координации, принципы координационной деятельности цнс.
  • Лекция 8. Физиология спинного мозга и мозгового ствола.
  • 8.1. Роль спинного мозга в регуляции функций организма: вегетативные и соматические центры и их значение.
  • 8.2. Продолговатый мозг и мост: центры и соответствующие им рефлексы, их отличия от рефлексов спинного мозга.
  • 8.3 Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы.
  • Лекция 9. Физиология ретикулярной формации, промежуточного и заднего мозга.
  • 9.2. Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
  • 9.3. Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.
  • Лекция 10. Физиология переднего мозга. Физиология вегетативной нервной системы.
  • 10.1. Мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.
  • 10.2. Лимбическая система: структуры и функции.
  • 10.3. Функции новой коры, функциональное значение соматосенсорных и моторных зон коры больших полушарий.
  • Лекция 11. Физиология эндокринной системы и нейроэндокринные отношения.
  • 11. 1. Эндокринная система и гормоны. Функциональное значение гормонов.
  • 11.2. Общие принципы регуляции функций эндокринных желез. Гипоталамо-гипофизарная система. Функции аденогипофиза. Функции нейрогипофиза
  • 11.4. Щитовидная железа: регуляция образования и транспорт иодированных гормонов, роль иодированных гормонов и кальцитонина. Функции паращитовидных желез.
  • Лекция 12. Физиология системы крови. Физико-химические свойства крови.
  • 12. 1. Кровь как составная часть внутренней среды организма. Понятие о системе крови (г.Ф. Ланг). Функции крови. Количество крови в организме и методы его определения.
  • 12. 2. Состав крови. Гематокрит. Состав плазмы. Основные физико-химические константы крови.
  • Лекция 13. Физиология гемостаза.
  • 13.1. Свертывание крови: понятие, ферментативная теория (Шмидт, Моравиц), факторы свертывания, роль тромбоцитов.
  • Лекция 14. Антигенные свойства крови. Основы трансфузиологии
  • 14.2. Группы крови систем Rh: открытие, антигенный состав, значение для клиники. Краткая характеристика других систем антигенов (m, n, s, p и др.)
  • Лекция 15. Клеточные элементы крови
  • 15.2. Гемоглобин: свойства, соединения гемоглобина, количество Нв, методы его определения. Цветовой показатель. Метаболизм гемоглобина.
  • 15.3. Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.
  • 15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
  • Лекция 16. Физиология сердечной деятельности
  • Лекция 17. Внешние проявления работы сердца, способы их регистрации. Функциональные показатели деятельности ердца.
  • Лекция 18. Регуляция работы сердца.
  • 18.2. Интракардиальная регуляция деятельности сердца: миогенная регуляция, внутрисердечная нервная система.
  • 18.3. Рефлекторные механизмы регуляции сердечной деятельности. Корковые влияния. Гуморальные механизмы регуляции работы сердца.
  • Лекция 19. Законы движения крови по сосудам. Основные гемодинамические показатели
  • Лекция 20. Особенности движения крови в разных отделах сосудистого русла.
  • 20.3. Давление крови в артериях: виды, показатели, факторы, их определяющие, кривая артериального давления.
  • 21.1. Нервная регуляция сосудистого тонуса.
  • 21.2. Базальный тонус и его компоненты, доля участия его в общем тонусе сосудов. Гуморальная регуляция сосудистого тонуса. Ренин-антиотезиновая система. Локальные регуляторные механизмы
  • 21. 4. Особенности регионального кровообращения: коронарного, легочного, мозгового, печеночного, почечного, кожного.
  • 22.1. Дыхание: этапы дыхательного процесса. Понятие о внешнем дыхании. Функциональное значение легкого, воздухоносных путей и грудной клетки в процессе дыхания. Негазообменные функции легких.
  • 22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. Понятие об отрицательном давлении, его величина, происхождение, значение.
  • 22. 3. Вентиляция легких: легочные объемы и емкости
  • Лекция 23. Механизмы газообмена
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.
  • Лекция 24. Регуляция дыхания
  • 24. 1. Структурно-функциональная характеристика дыхательного центра. Роль гуморальных факторов в регуляциИ интенсивности дыхания. Рефлекторная саморегуляция вдоха и выдоха.
  • 24. 2 Особенности дыхания и его регуляция при мышечной работе, при пониженном и повышенном атмосферном давлении. Гипоксия и ее виды. Искусственное дыхание. Гипербарическая оксигенация.
  • 24.3. Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.
  • Лекция 25. Общая характеристика пищеварительной системы. Пищеварение в полости рта.
  • Лекция 26. Пищеварение в желудке и 12-п. Кишке.
  • 26.3. Печень: ее роль в пищеварении (состав желчи, ее значение, регуляция желчеобразования и желчевыделения), не пищеварительные функции печени.
  • Лекция 27. Пищеварение в тонкой и толстой кишке. Всасывание. Голод и насыщение.
  • 27. 1. Пищеварение в тонкой кишке: количество, состав пищеварительного сока тонкой кишки, регуляция ее секреции, полостное и мембранное пищеварение. Виды сокращений тонкой кишки и их регуляция.
  • 27.3. Всасывание в желудочно-кишечном тракте: интенсивность всасывания в различных отделах, механизмы всасывания и опыты, их доказывающие; регуляция всасывания.
  • 27.4. Физиологические основы голода и насыщения. Периодическая деятельность желудочно-кишечного тракта. Механизмы активного выбора пищи и биологическое значение этого факта.
  • Лекция 28. Метаболические основы физиологических функций.
  • 28. 1. Значение Обмена веществ. Обмен белков, жиров и углеводов. Витамины и их роль в организме.
  • 28. 2. Особенности и регуляция водно-солевого обмена.
  • 28. 4. Принципы исследования прихода и расхода энергии организмом.
  • 28.5. Питание: физиологические нормы питания, основные требования к составлению пищевого рациона и режиму приема пищи,
  • Лекция 29. Терморегуляция
  • 29. 1. Терморегуляция и ее виды, физические и физиологические механизмы теплопродукции и теплоотдачи.
  • 29. 2. Механизмы Терморегуляции. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Понятие о гипотермии и гипертермии.
  • Лекция 31. Гомеостатические функции почек.
  • Лекция 32. Сенсорные системы. Физиология анализаторов
  • 32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.
  • 32.2. Анализаторы (и.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.
  • 32. 3. Кодирование информации в анализаторах.
  • Лекция 33. Физиологические особенности отдельных анализаторных систем.
  • 33. 1. Зрительный анализатор
  • 33. 2. Слуховой анализатор. Механизм восприятия звука.
  • 33. 3. Вестибулярный анализатор.
  • 33.4. Кожно-кинестетический анализатор.
  • 33.5. Обонятельный и вкусовой анализаторы.
  • 33. 6. Внутренний (висцеральный) анализатор.
  • Лекция 34. Физиология высшей нервной деятельности.
  • 34. 1. Понятие о высшей нервной деятельности. Классификация условных рефлексов и их характеристика. Методы изучения внд.
  • 34. 2. Механизм образования условных рефлексов. “Замыкание” временной связи (и.П. Павлов, э.А. Асратян, п.К. Анохин).
  • 34. 4. Аналитико-синтетическая деятельность коры больших полушарий.
  • 34.5. Индивидуальные особенности высшей нервной деятельности. Типы внд.
  • Лекция 35. Особености внд человека. Физиологические механизмы сна.
  • 35.1. Особенности внд человека. Понятие о первой и второй сигнальной системах человека.
  • 35. 2. Физиологические МеХанизмы сна.
  • Лекция 36. Физиологические механизмы памяти.
  • 36.1. Физиологические механизмы усвоения и сохранения информации. Виды и механизмы памяти.
  • Лекция 37. Эмоции и мотивации. Физиологические механизмы целенаправленного поведения
  • 37.1. Эмоции: причины возникновения, значение. Информационная теория эмоций п.С. Симонова и теория эмоциональных состояний г.И. Косицкого.
  • 37.2. Функциональная система целенаправленного поведения (п.К. Анохин), ее центральные механизмы. Мотивации и их виды.
  • Лекция 38. Защитные функции организма. Ноцицептивная система.
  • 38.1. Ноцицепция: биологическое значение боли, ноцицептивная и антиноцицептивная системы.
  • Лекция 39. Физиологические механизмы трудовой деятельности и приспособления организма к изменившимся условиям.
  • 39.1. Физиологические основы трудовой деятельности. Особенности физического и умственного труда. Особенности труда в условиях современного производства, утомление и активный отдых.
  • 39. 2. Aдаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к климатическим факторам обитания.
  • 39.3. Биологические ритмы и их значение в деятельности человека и его адаптации к экстремальным условиям.
  • 39. 4. Стресс. Механизм развития общего адаптационного синдрома.
  • Лекция 40. Физиология репродукции. Плодо-материнские отношения и функциональная система мать-плод (фсмп).
  • 2.2. Потенциал действия: фазы потенциала действия, механизм возникновения. Восстановительный период. Явление аккомодации возбудимой ткани.

    Потенциал действия . Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

    Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К + превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na + . Поэтому мембрана в покое снаружи заряжена положительно.

    При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К + . Поэтому поток ионов Na + в клетку начинает значительно превышать направленный наружу поток К + . Ток Na + достигает величины +150 мв. Одновременно несколько уменьшается выход К + из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

    При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электроотрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

    Потенциал действия протекает фазно. Временной ход потенциала действия включает четыре последовательных этапа: локальный ответ, деполяризацию, реполяризацию и следовые потенциалы (рис. 2). В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

    Рис. 2. Фазы и временной ход потенциала действия.

    Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию (следовой отрица-тельный потенциал) и следовую гиперполяризацию (следовой положи-тельный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

    Промежуток времени, в течение которого сохраняется активное состояние в виде ПД, неодинаков в разных возбудимых структурах. В нейронах он составляет около 1 мс, в волокнах скелетных мышц – 10 мс, в миокарде достигает 200–250 мс.

    Левое крыло графической записи ПД, отражающее изменение потенциала в электроположительную сторону называется деполяризацией. Область электроположительности носит название овершута, правое крыло ПД, свидетельствующее о восстановлении исходного поляризованного состояния мембраны принято называть реполяризацией. Часто, но не всегда возвращение ПД к исходному уровню в состоянии покоя происходит с наличием фаз в форме так называемых следовых потенциалов. Следовые потенциалы неодинаковы в мышцах и нервах. В волокнах скелетных мышц фаза реполяризации очень замедлена. Примерно через 1 мс после начала ПД наблюдается отчетливый перегиб крыла реполяризации – это следовая деполяризация. В нейроне чаще всего кривая реполяризации быстро пересекает уровень МПП и на некоторое время потенциал мембраны становится более электроотрицательным, чем МП. Это явление называют следовой гиперполяризацией.

    Повышение проницаемости мембраны для ионов Na + продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na + -каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

    Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са ++ , в других - для Mg + . Исследования механизмов изменения проницаемости мембран продолжаются.

    В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса. В результате повышения проводимости резко возрастает поток катионов Na + , поэтому отрицательный заряд в клетке вблизи внутренней стороны поверхности мембраны также резко уменьшается вплоть до преобладания положительных зарядов. В результате происходит изменение знака потенциала, достигающего +30 мВ. После этого проводимость мембраны дляNa + также резко снижается.

    Для нормального протекания ПД играет существенную роль и изменение проводимости мембраны для K + , которая начинает возрастать позже возрастания проводимости дляNa + . Увеличение относительно медленного выходаK + из клетки в фазу снижения проводимости дляNa + вызывает реполяризацию мембраны.

    Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

    Условия возникновения возбуждения . Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

    Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

    Инактивация Na+-системы. Na+-системой обозначают механизм, позволяющий в течение нескольких долей миллисекунды многократно (до 20 раз) увеличить проводимость клеточной мембраны для Na+. Достигнув пикового значения, примерно через 0,5 мс проводимость мембраны для Na+ начинает снижаться. Быстрое снижение проводимости для Na+ называют инактивацией Na+-системы. В основе инактивации Na+-системы лежит переход в инактивационное состояние потенциалзависимых Na+-каналов. Поэтому скорость и степень снижения проводимости потенциалзависимы. Это означает, что чем больше отличается потенциал мембраны от мембранного потенциала покоя в сторону электроположительности, тем сильнее инактивирована Na+-система. Поэтому деполяризация мембраны вызывает снижение тока Na+ внутрь клетки. С одной стороны, это свидетельствует о том, что усиление тока Na+ само себе служит причиной его быстрого последующего снижения и начала развития реполяризации. С другой стороны, это означает, что если исходный потенциал клетки выше потенциала покоя на 20–30 мВ, то Na+-система полностью инактивирована и никакая последующая деполяризация уже не может активировать ее, т.е. вызвать резкое увеличение проводимости для Na+ и генерацию ПД.

    Закон «всё или ничего» - правило, согласно которому на подпороговое раздражение возбудимая клетка не дает ответа, а на пороговое раздражение дает сразу максимальный ответ, причем при дальнейшем повышении силы раздражения величина ответа не изменяется.

    №100. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.

    Потенциа́л де́йствия - волна возбуждении, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

    А – спокойное состояние; В –мембрана на которой возник потенциал действия

    В основе любого потенциала действия лежат следующие явления:

    1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

    2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

    3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

    Третье явление является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

    1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

    2. Пиковый потенциал, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

    3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

    4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).



    №101.Потенциал-зависимые ионные каналы: строение, свойства, функционирование

    Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого - только ионы натрия и т. д.

    Ионные потенциал-зависимые каналы - это каналы, которые открываются и закрываются в ответ на изменение мембранного потенциала, например, натриевые каналы, ответственные за потенциал действия Если мембранный потенциал поддерживать на уровне потенциала покоя, натриевый ток практически отсутствует, что означает, что натриевые каналы закрыты. Если теперь сдвинуть мембранный потенциал в положительную сторону и удерживать его на постоянном уровне, то потенциал-зависимые натриевые каналы откроются и ионы натрия начнут передвигаться в клетку по градиенту концентрации. Этот натриевый ток достигнет максимума и Через несколько миллисекунд ток падает почти до нуля. Закрывшись, каналы переходят в инактивированное состояние, отличающееся от первоначального закрытого состояния, при котором они были способны открыться в ответ на деполяризацию мембраны. Каналы остаются инактивированными до тех пор, пока мембранный потенциал не вернется к исходному отрицательному значению и не закончится восстановительный период длительностью в несколько миллисекунд.

    При регистрации токов в очень малых участках мембраны было обнаружено, что канал открывается по принципу "все или ничего". Открытые каналы обладают одинаковой проводимостью, но открываются и закрываются независимо друг от друга, поэтому суммарный ток через мембрану всей клетки с ее многочисленными каналами определяется не степенью открытости каналов, а вероятностью быть открытым для каждого отдельного канала.

    _______________________________________________________________________________________

    №102. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.

    Скорость проведения в нервных волокнах колеблется от 0,25 м/сек в очень тонких немиелинизированных волокнах

    Распространение потенциала действия вдоль нервного волокна(аксона) обусловлено возникновением локальных токов, образующихся между возбужденным и невозбужденным участками клетки. В состоянии покоя внешняя поверхность клеточной мембраны имеет положительный потенциал, а внутренняя отрицательный. В момент возбуждения полярность мембраны меняется на противоположную. В результате этого между возбужденным и невозбужденным участками мембраны возникает разность потенциалов, это и приводит к появлению между этими участками локальных токов. На поверхности клеток локальный ток течет от невозбужденного участка к возбужденному, внутри клетки – в обратном направлении. Локальный ток раздражает соседние невозбужденные участки и вызывает увеличение проницаемости мембран. Это приводит к возникновению потенциалов действия в соседних участках. В то же время, в ранее возбужденном участке происходят восстановительные процессы реполяризации Вновь возбужденный участок в свою очередь становиться элекроотрицательным и возникающий локальный ток раздражает следующий за ним участок. Этот процесс повторяется многократно и обусловливает распространение импульсов возбуждения по всей длинне клетки в обоих направлениях. В нервной системе импульсы проходят лишь в определенном направлении из-за наличия синапсов, обладающих односторонней проводимостью.

    Удельное сопротивление биомембран велико, но вследствии их малой толщины сопротивление изоляции в сотни тысяч раз меньше, чем у технического кабеля.По этому однородное нервное волокно не может проводить электрический сигнал на далекие расстояния.

    λ=корень из (dR/4р)

    d- диаметр волокна, R - поверхностное сопротивление мембраны в Ом * м 2 и р-удельное сопротивление аксоплазмы в Ом*м.

    С увеличением λ (постоянная длины) степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса. Увеличения постоянной длинны λ можно добиться путем увеличения диаметра d аксона.

    _______________________________________________________________________________________

    №103. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.

    У высокоорганизованных животных затухание сигнала предотвращается с помощью миелиновой оболочки вокруг аксона. Примерно через каждые 1-3 мм вдоль миелиновой оболочки имеется перехват Ранвье.

    Центральной его частью является аксон, по мембране которого проводится потенциал действия. Аксон заполнен аксоплазмой - вязкой внутриклеточной жидкостью.

    С увеличением λ степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса.

    Удельное сопротивление миелина значительно выше удельного сопротивления других биологических мембран.кроме того толщина миелиновой оболочки во много раз больше толщины обычной мембраны, что приводит к возрастанию диаметра волокна и соответственно величины постоянной длины. λ

    В связи с большим сопротивлением миелиновой оболочки по поверзности аксона токи протекать не могут. При возбуждении одного узла возникают токи между ним и другими узлами. Ток подошедший к другому узлу, возбуждает его, вызывает появление в этом месте потенциала действия, и так процесс распространяется по всему волокну. Затраты энергии на распространение сигнала по волокну, покрытому миелином значительно меньше чем по немиелинизированному.

    _______________________________________________________________________________________

    №104. Назначение и определение рецепции. Схема движения информации при рецепции.

    Рецепция – это восприятие организмом энергии раздражителя, несущего информацию и преобразующим её в электрические сигналы нервного возбуждения.

    Рецепция необходима для:

    1. Оптимизации поведения живой системы в зависимости от ситуации во внешнем мире

    2. Непрерывные регуляции характеристик состояния внутренних органов, сред и тканей организма

    Простейшая блок схема (квадратики 1-9, 5 и 8 -над линией):

    1. Источник информации

    2. Стимул, воспринимаемый организмом

    3. Устройство подготовки и сбора сигнала для рецепции

    4. Непосредственно рецептор (устройство воспринимающее сигнал и преобразующее его в электронные импульсы)

    5. Нервные пучки, проводящие импульсы в корковый центр

    6. Корковый центр, воспринимающий и осуществляющий анализ первичной информации

    7. ЦНС – окончательная обработка и оценка информации

    8. Эфферентные нервные пути передающие информацию от ЦНС к органу или системе то есть эффектору.

    9. Исполнитель

    №105. Определение рецептора. Органы чувств и анализаторы. Примеры использования рецепции в жизнедеятельности организма.

    Рецептор – это устройство воспринимающее сигнал и преобразующее его в электронные импульсы

    Биологические анализаторы – это биологические системы, предназначенные для восприятия, а иногда и обработки информации из внешней и внутренней среды

    Порог ступени : ни одна сенсорная система не способна воспринимать сигнал сколь угодно малой интенсивности. Она воспринимает только те сигналы которые больше I порога ступени.

    Порок интенсивности – минимальная единица, которая вызывает чувствительность

    Kc = I ад.ст./ I неад. ст.

    Частотная характеристика – стимулы, имеющие колебательную природу.

    При постоянной I стимула (I ст = const), но изменении его частоты происходит адекватное отражение картины, но при определенном диапазоне частот – картина искажается, на еще большем отдалении сигнал перестает восприниматься.

    Амплитудная характеристика связывает I ощущения с I стимула.

    Предел разрешения: тип различия между параметрами сигнала (либо по амплитуде, либо по частоте), которые при данных условиях еще вызывают ощущения изменения.

    Орган чувств - сложившаяся в процессе эволюции специализированная периферическая анатомо-физиологическая система, обеспечивающая благодаря своим рецепторам получение и первичный анализ информации из окружающего мира и от других органов самого организма, то есть из внешней и внутренней среды организма.

    Дистантные органы чувств воспринимают раздражения на расстоянии (например, органы зрения, слуха, обоняния); другие органы (вкусовые и осязания) - лишь при непосредственном контакте. Одни органы чувств могут в определенной степени дополнять другие. Например, развитое обоняние или осязание может в некоторой степени компенсировать слабо развитое зрение.

    Примеры использования рецепции в жизнедеятельности организма.??

    №106. Классификация рецепторов.

    1. По методу получения информации:

    Экстерорецепторы (из внешней среды)

    Интерорецепторы (изнутри)

    2. По природе воспринимаемых раздражителей:

    Механорецепторы (рецепторы расширения легких)

    Хеморецепторы (рецепторы кожных реакций, слуха, обоняния, вкуса)

    Терморецепторы (тепловые, холодовые)

    Электрорецепторы (боковые линии у рыб)

    Магниторецепторы (навигация при перемещении у птиц)

    3. По степени универсальности:

    Мономодальные – фиксирующие раздражение только одного раздражителя

    Полимодальные - фиксирующие раздражение нескольких раздражителей

    №107. Строение рецепторов.

    СНО (свободные нервные окончания). Аксон разделяется на нервные окончания, потерявшие способность к возбуждению, являются полимодальными образованиями.

    ИНО (инкапсулированные чувствительные окончания)

    Они были сконструированы, как чувствительные специализированные клетки мономодальные. Являются видоизменёнными аксонами нейронов, иногда это эпителиальные клетки.

    По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств.

    Наиболее примитивными рецепторами считаются механические, реагирующие на прикосновение и давление. Разница между этими двумя ощущениями количественная; прикосновение обычно регистрируется тончайшими окончаниями нейронов, расположенными близко к поверхности кожи, в основаниях волосков или усиков. Есть и специализированные органы – тельца Мейснера. На давление же реагируют тельца Пачини, состоящие из единственного нервного окончания, окружённого соединительной тканью. Импульсы возбуждаются за счёт изменения проницаемости мембраны, возникающей благодаря её растяжению.

    №108. Общие механизмы рецепции. Рецепторные потенциалы.

    1 этап: Когда приходит адекватный для данного рецептора стимул. Взаимодействует с рецептирующим субстратом, который обычно находятся в мембране клетки.

    2 этап: В R: происходит локальное изменение мембранной разности потенциалов. Сам рецептор не является возбудимой клеткой, так как там нет потенциал зависимых каналов! Изменение – рецепторный потенциал (РП), не подвергается закону «все или ничего», зависит от длительности действия стимула и от его интенсивности.

    3 этап: Генерации потенциала приводит в R: к возобновлению потенциала действия (ПД).

    Деполяризация называется рецепторным потенциалом (или генераторным потенциалом). Рецепторный потенциал обусловлен повышением Na+ - проводимости мембраны дендритов, в результате чего вход ионов натрия создает деполяризующий рецепторный потенциал, который электротонически распространяется к соме. Эта первичная трансформация стимула в рецепторный потенциал называется преобразованием, а рецептор, таким образом, является преобразователем.

    Исключение составляют рецепторные потенциалы первичных зрительных клеток сетчатки, являющиеся гиперполяризующими.

    Стимул не служит источником энергии для рецепторного потенциала, он только контролирует путем взаимодействия с мембранными процессами вход ионов через мембрану, основанный на трансмембранной разности их концентраций.

    Рецепторный потенциал электротонически распространяется от дендритов по соме, деполяризует основание аксона и если деполяризация превысит порог для возбуждения, в аксоне возникает серия потенциалов действия, частота которой зависит от амплитуды рецепторного потенциала. Потенциалы действия проводятся в ЦНС и несут в форме частотного кода всю информацию о величине и длительности стимулов.

    Потенциа́л де́йствия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого, наружная поверхность этого участка становится отрицательно заряженной, по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

    №109. Кодирование информации в органах чувств.

    Цели биологической системы:

    1. самосохранение

    2. продолжение рода

    Любая информация, приходящая в рецепторные системы переносится определенным физическим носителем (длительные анализатор – электро-магнитные). Стимулы преобразуется в рецепторный потенциал, а затем в потенциала действия.

    v(ню) = k log I(ст) – частота следующих пачек ПД пропорциональна интенсивности стимула.

    В сенсорных системах широко применяется кодирование силы раздражителя:
    1) путём изменения частоты импульсов в волокнах;
    2) количеством задействованных нервных элементов;
    3) также широко применяется кодирование качества раздражителя особой структурой ответа рецептора и волокна, так называемым паттерном (рисунком) ответа.

    Согласно теории структуры ответа качества раздражителя кодируются рисунком (паттерном) пачки ПД, т.е. количеством, частотой и характерным распределением потенциалов действия внутри каждой пачки импульсов, а также количеством, продолжительностью, частотой самих пачек, периодичностью их следования, продолжительностью межимпульсных интервалов и т.д.

    №110. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.

    Психофизический закон Вебера-Фехнера. Если увеличение раздражения в геометрической прогрессии, то ощущение этого раздражения увеличивает в арифметической прогрессии.

    Если I (интенсивность звука) принимает ряд последовательных значений аI 0 ; a 2 I 0 ; a 3 I 0 , то соответствующим ощущением – E 0 ; 2E 0 ; 3E 0 … a – коэффициент, а больше 1.

    Другими словами, громкость звука пропорциональна логарифму интенсивности звука. При действии 2-х звуковых раздражителей I0 и I (I0 – порок слышимости)

    E=k*lg(I/ I); k - коэффициент пропорциональности.

    Рецепция Звука:

    Характеризуется:

    1. Частотой

    2.Амплитудой

    3. Спектром

    Продольные акустические давление в определенном диапазоне частот.

    Абсолютный порог слышимости – I тип звука, который улавливается ухом.

    I0=10-12 Вт/м2 – на частоте измеряется в кГц

    Коэффициент избирательности равен 10-10.

    Ушная раковина

    Наружный слуховой проход

    Барабанная перепонка

    Рецепция света:

    Рецепция света – фоторецепторы

    1.Колбочки – реализация цветового зрения. Принцип действия такой жжет как и у палочек.

    2. Палочки – реализация сумеречного зрения. Сетчатка – многослойное образование, толстое, есть сосудистая оболочка и т.д. Рецепторы находятся на дне в пигментном эпителии.

    Квант света попадает в мембране диска. Этим зрительным рецепции и отличается, т.к. в других случаях стимул в самих рецепторах, а в зрительном рецепторе в мембрану органеллы. У палочек рецепторный пигмент – родоксин, у колбочек – йодоксин. Родоксин состоит из ретиноля и оксина, свойство – имеет возможность конформационно перестраиваться.

    Нормальное состояние – цис-состояние, отличающееся закругленностью. Поймав квант света происходит перестройка в транс-состояние, при это выделяется некоторое количество энергии. Процесс называется фотоизомерезация.

    Происходит изменение свойств мембраны дисков. Рождается внутриклеточный посредник, он передает г/з ц/п воздействия на цитомембрану – происходит воздействие на неё (гиперполяризация) – палочки/колбочки.

    Рецепторный потенциал - биопотенциал, возникающий при деполяризации поверхностной мембраны рецептора, обусловленной действием на него раздражителя. Он распределяется по мембране колбочки/палочки и добирается до синапса. Сигнал, прошедший синапс, возбуждает мембрану аксона. Далее он распределяется дальше и идет в зрительный нерв. Гиперполяризация возникает благодаря тому, что прошедший внутренний посредник способствует закрытию натриевых каналов и называется они фотозависимые Na каналы.

    Проблемы Цветного зрения:

    Дальтонизм (частичная цветовая слепота) наследственное нарушение цветового зрения у людей, заключающееся в неспособности различать некоторые цвета (большей частью красный и зеленый). Объясняется отсутствием в сетчатке глаза колбочек одного или нескольких типов.

    №111. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.

    Звук – это механические колебания в упругой среде. Имеет объектив характеристики, т.е. не зависит от нашего восприятия.

    Характеризуется:

    1. Частотой

    2.Амплитудой

    3. Спектром

    Интенсивность – это громкость звука.

    Характеристики слухового анализатора:

    Продольное акустическое давление - в определенном диапазоне частот.

    Абсолютный порог слышимости – тип звука, который улавливается ухом.

    I 0 =10 -12 Вт/м2 – на частоте измеряется в кГц

    Коэффициент избирательности равен 10 -10 .

    Слуховая рецепция. Назначение, строение и работа звуковоспринимающих систем.

    1. Наружное ухо (подготовка звуковых колебаний к реакции)

    Ушная раковина

    Наружный слуховой проход

    Барабанная перепонка

    Есть слуховые косточки, связки, мышцы (среднее ухо), улитка, баз. мембрана.

    По базальной мембране проходят прямая и отраженная волны. Пучность возникает при интерференции этих волн.

    В месте залегания волосков – деполяризация доходит до колебания

    Раздражение слухового нерва в нижней части БМ и через синапс.

    №112. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.

    Зрительный анализатор обладает оптической системой, которая преломляет и фокусирует приходящие световые лучи и в результате этого строится изображение на сетчатке.

    Световые лучи – поток этих волн. Их можно рассматривать как волны и как аналоги некоторых частиц = кванты света.

    Строение зрительного анализатора.

    Адекватный раздражитель это волны определенного диапазона частот. Чувствительность зрительного анализатора – порог светочувствительности 10 -18 Вт

    Глаз способен воспринимать световые кванты начиная с 10 кв, при прозрачной атмосфере можно увидеть свечу на расстоянии от 1-3 км. Коэффициент избирательности высокий 10 -14 .

    Частотная характеристика.(400 – 750 Нм). Амплитудная характеристика - Эта логарифмическая зависимость выполняется в пределах 100 кратного измерения стимула.

    №113. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.

    Экология – это условия окружающей среды, в которых находится биосистема.

    Физические экологические факторы (по происхождению):

    Геофизические →метеорологические→Земные

    Космические: солнечные, космические

    Антропогенные

    Физические экологические факторы (по физ.сущности):

    · магнитные поля (силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.)

    · гравитационные поля (физическое поле, через которое осуществляется гравитационное взаимодействие (Гравитация -универсальное фундаментальное взаимодействие между всеми материальными телами)

    · электрические поля →ЭМ: радиоизлучение, телевизионный диапазон, локаторы, УФ облучение (на ДНК кожное облучение)

    2. вибрация (механическиеколебания.)

    3. радиация

    · инфразвук (упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16-25 Гц)

    · ультразвук (упругие звуковые колебания высокой частоты)

    4. звуковые факторы

    5. шумовые факторы

    ________________________________________________________________________________________________________

    №114. Составляющие величины естественного фона. Примеры антропогенного изменения фоновых значений физических факторов.

    Фон – усредненная величина, характеризующая количественное значение экологического фактора в данном регионе.

    Фон = E ф.(естественный фон) + a×с (антропогенное состояние)

    Р ф.= E ф. (излучение земных пород, космическое излучение радона) +a×с (возникает благодаря испытаниям яд. оружия)

    М ф. = Е ф. (геомагнитное поле, космическое составляющее магнитного поля от естественных влияний) + a×с (электротранспорт, бытовая техника, мед. исследования)

    Дополнительно. Изменения леса. Каждый участок леса подвергался раньше или подвергается сейчас определенным видам антропогенного воздействия - даже в том случае, если такое воздействие не может быть прямо обнаружено и измерено. Характерными примерами таких повсеместно распространенных видов антропогенных воздействий являются глобальное загрязнение атмосферы, изменения численности видов охотничье-промысловых животных или изменения частоты лесных пожаров в результате изменения плотности и образа жизни населения в лесных регионах.

    _______________________________________________________________________________________

    №115. Значение радиационного фона для здоровья человека.

    Радиационное излучение – один из наиболее изученных и сильных по воздействию на живые системы биофизических факторов. За этим термином прячется спектр разнообразных по природе и по эффекту излучений.

    Одна из опасностей радиоактивного излучения связана с тем, что у человека нет к нему рецепторов. Человеческий организм очень чувствителен к радиоактивным поражениям. Радиоактивное излучение в результате воздействий на клеточном и субклеточном уровне вызывает появление большого количества свободных радикалов (они вредоносны).

    Возникает поражение системы крови, общее название – лучевая болезнь.

    Радиопротекторы в какой-то степени понижают эффекты радиационного излучения.

    Проникающая способность:

    От мм для α

    До см для β

    Для нейротропного излучения до полного проникновения

    _______________________________________________________________________________________

    №116. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.

    Магнитное поле Земли (геомагнитное поле) - магнитное поле, генерируемое внутриземными источниками.

    Строение и характеристики магнитного поля Земли

    На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

    По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

    Параметры поля

    Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами. Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс.

    Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Напряжённость магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

    Магнитные поля в свободном состоянии – 0,4 Э (Эрстед)

    Напряжённость поля на поверхности Земли сильно зависит от географического положения. Напряжённость магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает.

    Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца.

    Магнитные поля в обычной жизни имеют небольшую интенсивность. Они обладают высокой проникающей способностью. В результате проведения исследований магнитного поля – выявился биотропный фактор.

    Магнитотерапия – воздействие в качестве магнитного фактора.

    Магнитная буря оказывает негативное воздействие.

    _______________________________________________________________________________________

    №117. Возможные механизмы влияния геомагнитного поля на организм.

    1) Если сильно заряженные частицы есть в веществе – происходит изменение траектории движения зарядов

    2) Эффект Зимана: Под действием Магнитного Поля электронные уровни атома расщепляются на подуровни; слабые Магнитные Поля вызывают этот эффект у тех ионов, которые участвуют в метаболизме.

    _______________________________________________________________________________________



    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 Яблочный пудинг с манкой для детей Молочный пудинг для ребенка 1 5 вышивка – все толкования вышивка – все толкования Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение