Давление в деаэраторе. Что представляет из себя деаэратор в котельной? Деаэрация подпиточной воды

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Заключительной стадией технологического процесса приготовления питательной воды для паровых котлов является удаление растворенных в ней агрессивных га­зов, в первую очередь кислорода, а также углекислоты, вызывающих коррозию металла теплосиловых установок. Кислородная коррозия является наиболее опасной, так как она проявляется на отдельных участках поверхнос­ти металла в виде небольших язвин и развивается в глу­бину металла вплоть до образования сквозных свищей. Для современных паровых котлов большой паропроизво - дительности даже самая незначительная концентрация растворенного в питательной воде кислорода может быть причиной нарушения нормальной работы и выхода из строя отдельных элементов их, из которых в первую очередь обычно подвергается коррозии экономайзер.

Таким образом, для обеспечения надежной эксплуа­тации современных паровых котлов необходимо стре­миться к практически полному отсутствию в питательной воде растворенного кислорода.

Процесс удаления из воды растворенных газов носит название дегазации или деаэрации. В настоящее время известно несколько способов деаэрации-термический и химический.

Наибольшее распространение получил термический способ деаэрации воды. Этот способ основывается на том, что растворимость в воде газов с повышением ее температуры уменьшается, а при температуре, равной температуре кипения, газы почти полностью удаляют­ся из воды. Таким способом газы удаляются из воды в специальных устройствах, которые принято называть тер­мическими деаэраторами.

Для дегазации воды применяются преимущественно деаэраторы атмосферного типа, работающие при абсо­лютном давлении 0,1 МПа (1 кгс/см2), и вакуумные деа­эраторы, работающие при абсолютном давлении от 0,0007 до 0,05 МПа (от 0,075 до 0,5 кгс/см2), т. е. при темпера­турах деаэрированной воды от 40 до 80 °С. Деаэрация воды основана на законе Генри, согласно которому ко­личество газа, растворенного в единице объема воды, пропорционально парциальному давлению этого газа в газовой или парогазовой смеси над поверхностью воды. Для полного удаления газов из воды необходимо создать условия, при которых парциальные давления этих газов над поверхностью воды будут равны нулю, что возмож­но при температуре кипения воды, т. е. при доведении ее до температуры насыщения при давлении в деаэраторе и отводе газов из парового пространства деаэратора.

В паровых котельных наибольшее применение полу­чили деаэраторы атмосферного типа - ДСА (рис. 3.1). Двуступенчатый барботажный деаэратор состоит из ма­логабаритной деаэрационной колонки и бака-аккумуля­тора со встроенным барботажным устройством и пере­городками, образующими специальные отсеки. Деаэра - ционная колонка имеет две тарелки с отверстиями, через которые вода стекает в бак-аккумулятор. На первой по ходу воды тарелке смонтировано устройство для луч­шего перемешивания поступающих в деаэратор потоков конденсата и химически обработанной воды. Эти по­токи поступают во внешнее кольцо смесительного уст­ройства, после чего вода через два водослива попадает на перфорированную часть первой тарелки.

После колонки деаэрируемая вода поступает в бак - аккумулятор, в нижней части которого у противополож­ного торца размещается затопленное барботажное уст­ройство. Греющий пар по трубе подается в паровую ко­робку и через отверстия дырчатого листа барботирует через слой воды, медленно движущейся над листом в сто-

Рону патрубка для отвода воды из деаэратора. Вода, вы­ходящая из барботажного устройства, поступает в подъ­емную шахту. Вскипание объясняется наличием неболь­шого перегрева воды относительно температуры насыщения, которая соответствует давлению в паровом пространстве бака-аккумулятора. Перегрев определяется высотой столба жидкости над барботажным листом.

Пар, проходящий через барботажное устройство и столб воды, попадая в паровое пространство, движется над поверхностью воды в сторону колонки. Размещение колонки на противоположной стороне от барботажного устройства обеспечивает четко выраженное противоточное движение потоков воды и пара и хорошую вентиляцию парового пространства бака.

Пар, необходимый для деаэрации, подается в барбо­тажное устройство от регулятора давления: давления пара перед регулятором 0,6-0,7 МПа (6-7 кгс/см2), после регулятора - 0,05-0,07 МПа (0,5-0,7 кгс/см2). На деаэраторах производительностью более 50 т/ч пре­дусмотрен патрубок для подвода низкотемпературного пара с давлением 0,02-0,03 МПа (0,2-0,3 кгс/см2) (от расширителей непрерывной продувки, от поршневых па­ровых насосов, турбонасосов) непосредственно в паро­вое пространство деаэратора для лучшей вентиляции па­рового объема деаэратора и на первую ступень деаэра­ции в деаэрационной колонке.

Выпар из деаэрационной колонки отводится в охлади­тель выпара и из него в канализацию, а газы - через воздушник в атмосферу. Деаэраторы комплектуются гид­розатворами для защиты от превышения давления.

Деаэраторы атмосферного типа рассчитаны на ра­боту при давлении 0,01-0,02 МПа (0,1-0,2 кгс/см2) и температуре воды 102-104 °С. Согласно ГОСТ 16860-71 «Деаэраторы термические» изменение подогрева воды в деаэраторах должно быть не более 10-40 °С.

НПО ЦКТИ разработана новая конструкция двухсту­пенчатых барботажных деаэраторов (типа ДА) атмос­ферного типа. Эти деаэраторы отличаются тем, что бар - ботажное устройство в них располагается в нижней час­ти деаэрационной колонки. Колонка устанавливается на деаэрационный бак старой конструкции. Подвод хими­чески очищенной воды и конденсата осуществляется в верхнюю часть колонки, пар подводится в паровое про­странство деаэраторного бака со стороны, противопо­ложной колонке. Такой подвод пара обеспечивает на­дежную вентиляцию парового объема бака. Отвод воды из деаэратора осуществляется со стороны, противопо­ложной колонке.

Преимущества новых деаэраторов сравнительно с де­аэраторами типа ДСА: повышенная заводская готов­ность, снижение металлоемкости, упрощение монтажа, повышение эксплуатационной надежности, уменьшение коррозии деаэраторных баков. Общая высота по срав­нению с ДСА увеличилась на 600-700 мм.

Вакуумные деаэраторы применяются в основном в во­догрейных котельных.

Вакуумная деаэрационная установка представляет собой вакуумную колонку (деаэратор) и аккумулятор­ный бак, находящийся под атмосферным давлением.

Вакуумная колонка имеет две ступени дегазации: струйную и барботажную.

Подогретая вода поступает на верхнюю тарелку, ко­торая секционирована с таким расчетом, что при мини­мальных нагрузках работает только часть отверстий во внутреннем секторе. При увеличении нагрузки в работу включаются дополнительные ряды отверстий, это позво­ляет избежать гидравлических перекосов по воде и пару при колебаниях нагрузки. Под барботажный лист по­дается пар или перегретая вода (120-140°С), при вски­пании которой образуется паровая подушка и происхо­дит процесс парового барботажа.

Вакуумные деаэраторы укомплектованы охладителя­ми выпара, водо-водяными эжекторами, системой авто­матического регулирования и контроля и соответствую­щими регулирующими клапанами.

Дегазация воды химическим способом осуществляет­ся путем сульфигирования, т. е. введения в нагретую (до 80°С) питательную воду раствора сульфита натрия Na2S0.5. Этот способ по сравнению с термической дега­зацией более дорогой и поэтому не получил широкого распространения.

Способ обработки воды для конкретной котельной установки должен определяться специализированной (проектной, наладочной) организацией. Согласно требо­ваниям Правил по котлам все котлы паропроизводитель­ностью 0,7 т/ч и более должны быть оборудованы уста­новками для докотловой обработки воды.

В котельных с котлами паропроизводительностью ме­нее 0,7 т/ч установка водоподготовительных устройств не обязательна, но периодичность проведения очистки котлов должна быть такой, чтобы к моменту остановки котла на очистку толщина отложений на наиболее тея - лонапряженных участках его поверхности нагрева не превышала 0,5 мм.

Для каждой котельной с котлами паропроизводи­тельностью 0,7 т/ч и выше должна быть разработана про­ектной, наладочной или другой специализированной ор­ганизацией и утверждена администрацией предприятия инструкция (режимные карты) по водоподготовке. В ин­струкции должны быть указаны нормы качества пита­тельной и котловой воды для данной котельной уста­новки, режим непрерывной и периодической продувок, порядок выполнения анализов котловой и питательной воды и обслуживания водоподготовительного оборудо­вания, сроки остановки котла на очистку и промывку и порядок осмотра остановленных котлов. В необходимых случаях в инструкции следует предусматривать также проверку агрессивности котловой воды.

Чтобы исключить случаи питания котла сырой водой, на резервных линиях сырой воды, присоединенных к ли­ниям питательной воды, должны устанавливаться два запорных органа и контрольный кран между ними. За­порные органы следует опломбировать в закрытом поло­жении (контрольный кран открыт), а каждый случай питания сырой водой записывать в журнал по во - доподготовке с указанием причин.

Во всех деаэраторах выделенные газы скапливаются в зоне пара выше уровня воды. Для уменьшения концентрации кислорода и высвободившейся углекислоты в зоне пара необходимо всегда проводить удаление части выпара.

Чем выше концентрация газов в паре, тем ниже эффективность удаления газов из воды. Поэтому продувка выпара осуществляется в месте, расположенном как можно ближе к входу воды, а именно рядом с распылителем или выше расположения каскадов.

Если температура в деаэраторе снизилась ниже температуры насыщения пара (напр. ниже 1,2 бар / 105 °С), то это является показателем не достаточной интенсивности продувки выпара.

Измеренное давление показывает суммарное давление смеси газов и пара. Однако парциальное давление газов составляет значительную часть от располагаемого давления 1,2 бар. Из-за этого фактическое давление пара ниже 1,2 бар и температура воды соответственно ниже 105 °С. Рекомендуется наряду с давлением в деаэраторе измерять также и температуру воды.

Рекуперация тепловой энергии выпара

В больших деаэраторах может быть выгодным использовать тепловую энергию гитара в теплообменнике для целей предварительного подогрева. Эффективность от использования тепловой энергии может снижаться из-за значительных ремонтно-эксплуатационных затрат на теплообменнике (из-за высоких коррозионных свойств удаляемых газов).

Защита насоса от воздействия не дегазированной воды удалением

Время процесса дегазации воды в деаэраторе должно составлять не менее 25 минут. Должны быть выполнены мероприятия против попадания не полностью дегазированной воды на всасывающий патрубок питательного насоса. Другими словами: не допускать контакт не дегазированной воды с питательным насосом.

У обоих типов деаэраторов, струйного и каскадного, место расположения распылителя воды должно быть как можно дальше (по ходу движения воды) удалено от патрубка присоединения питательного насоса. К сожалению, в практике это требование не всегда соблюдается. Некоторые производители устанавливают в тело деаэратора барьеры для увеличения пути движения воды через деаэратор.

Температура смеси воды подпитки и возвращённого конденсата

Для достижения желаемой степени дегазации необходима подача достаточного количества свежего пара. Это условие обеспечивается если у деаэратора, засчитанного на температуру напр. 105 °С, температура смеси не выше 90 или 95 °С. Условие должно соблюдаться также в случае, когда вода и конденсат подаются раздельно. Это условие не распространяется на конденсат под давлением, который в деаэраторе испаряется.

Предохранительный клапан

Как правило, деаэраторы защищены предохранительным клапаном, настроенным на давление 1,4 бар. При номинальном давлении выше 1,5 бар деаэратор подлежит периодическим испытаниям.

Некоторые деаэраторы старых конструкций оснащены защитой от перелива / перепуска, выполненной в форме гидрозатвора. В практике такие системы имеют недостатки. При каждом броске давления выше, чем давление столба воды, гидрозатвор опорожняется и пар выходит наружу. Чтобы снова восстановить гидрозатвор, необходимо снизить давление в деаэраторе.

В силу не надёжности этих устройств, для защиты от превышения давления сегодня почти всегда применяются предохранительные клапаны.

Источник : "Рекомендации по применению оборудования ARI. Практическое руководство по пару и конденсату. Требования и условия безопасной эксплуатации. Изд. ARI-Armaturen GmbH & Co. KG 2010"

Вы в любой момент можете обратиться за помощью к специалистам по эл. адресу: info@сайт

Иностранная терминология

В значительной части зарубежных систем технических терминов нет единого термина «деаэратор» для описания элемента тепловой схемы станции в виде бака с колонкой; например, в немецком колонка называется Entragaserdom, и понятие «деаэратор» (Entgaser) относится только к ней, а бак запаса питательной воды - Speisewasserbehälter. В последнее время и в некоторых русскоязычных публикациях (о нетрадиционных для наших предприятий конструкциях либо переводных) бак отделяют от деаэратора.

Назначение

  • Защита трубопроводов и оборудования от коррозии .
  • Недопущение воздушных пузырей, нарушающих проходимость гидравлических систем, нормальную работу форсунок и т. д.
  • Защита насосов от кавитации .

Принцип действия

В жидкости газ может присутствовать в виде:

  • собственно растворённых молекул ;
  • микропузырьков (порядка 10 −7 ), образующихся вокруг частиц гидрофобных примесей;
  • в составе соединений, разрушающихся на последующих стадиях технологического цикла с выделением газа (например, NaHCO 3).

В деаэраторе происходит процесс массообмена между двумя фазами : жидкостью и парогазовой смесью. Кинетическое уравнение для концентрации растворённого в жидкости газа при его равновесной (с учётом содержания во второй фазе) концентрации , исходя из закона Генри , выглядит как

,

где - время; f - удельная поверхность раздела фаз; k - скоростной коэффициент, зависящий, в частности, от характерного диффузионного пути , который газ должен преодолеть для выхода из жидкости. Очевидно, для полного удаления газов из жидкости требуется (парциальное давление газа над жидкостью должно стремиться к нулю, то есть выделившиеся газы должны эффективно удаляться и замещаться паром) и бесконечное время протекания процесса. На практике задаются технологически допустимой и экономически целесообразной глубиной дегазации.

В термических деаэраторах, основанных на принципе диффузионной десорбции , жидкость нагревается до кипения ; при этом растворимость газов близка к нулю, образующийся пар (выпар) уносит газы ( снижается), а коэффициент диффузии высок (растёт k ).

В вихревых деаэраторах собственно обогрева жидкости не происходит (это делается в теплообменниках перед ними), а используются гидродинамические эффекты, вызывающие принудительную десорбцию : жидкость разрывается в самых слабых местах - по микропузырькам газа, а затем в вихре фазы разделяются силами инерции под действием разности плотности .

Кроме того, известны небольшие установки, где некоторая степень деаэрации достигается облучением жидкости ультразвуком . При облучении воды ультразвуком интенсивностью порядка 1 Вт /см 2 происходит снижение на 30-50 %, k возрастает примерно в 1000 раз, что приводит к коагуляции пузырьков с последующим выходом из воды под действием Архимедовой силы .

Выпар

Выпар - это смесь выделившихся из воды газов и небольшого количества пара, подлежащая эвакуации из деаэратора. Для нормальной работы деаэраторов распространённых конструкций его расход (по пару по отношению к производительности) должен составлять не менее 1-2 кг/т, а при наличии в исходной воде значительного количества свободной или связанной углекиcлоты - 2-3 кг/т. Чтобы избежать потерь рабочего тела из цикла, выпар на крупных установках конденсируют . Если охладитель выпара, применяемый для этой цели, устанавливается на исходной воде деаэратора (как на рис.), она должна быть достаточно сильно недогрета до температуры насыщения в деаэраторе. При использовании выпара на эжекторах он конденсируется на их холодильниках, и специальный теплообменник не нужен.

Термические деаэраторы

Термические деаэраторы классифицируютя по давлению.

Атмосферные деаэраторы (см. рис.) требуют наименьшей толщины стенок; выпар удаляется из них самотёком под действием небольшого избытка давления над атмосферным. Вакуумные деаэраторы могут работать в условиях, когда на котельной нет пара; однако им требуется специальное устройство для отсоса выпара (вакуумный эжектор) и б́ольшая толщина стенок, к тому же бикарбонаты при низких температурах разлагаются не полностью и есть опасность повторного подсоса воздуха по тракту до насосов . Деаэраторы ДП имеют больш́ую толщину стенок, зато их применение в схеме ТЭС позволяет сократить количество металлоёмких ПВД и использовать выпар как дешёвую рабочую среду для пароструйных эжекторов конденсатора ; деаэрационная приставка конденсатора, в свою очередь, является вакуумным деаэратором.

Как теплообменные аппараты термические деаэраторы могут быть смесительными (обычно, греющие пар и/или вода подаются в объём деаэратора) или поверхностными (греющая среда отделена от нагреваемой поверхностью теплообмена); последнее часто встречается у вакуумных подпиточных деаэраторов теплосетей.

По способу создания поверхности контакта фаз смесительные деаэраторы подразделяются на струйные , плёночные и барботажные (встречаются смешанные конструкции).

В струйных и плёночных деаэраторах основным элементом является колонка деаэратора - устройство, в котором вода стекает сверху вниз в бак, а греющий пар поднимается снизу вверх на выпар, попутно конденсируясь на воде. В небольших деаэраторах колонка может быть интегрирована в один корпус с баком; обычно же она выглядит как вертикальный цилиндр, пристыкованный сверху к горизонтальному баку (цилиндрической ёмкости с эллиптическими либо коническими днищами). Сверху находится водораспределитель, снизу - парораспределитель (например, кольцевая перфорированная труба), между ними - активная зона. Толщина колонки данной производительности определяется допустимой плотностью орошения активной зоны (расходом воды через единицу площади).

В деаэраторах струйного типа вода проходит активную зону в виде струй, на которые она может быть разбита 5-10 дырчатыми тарелками (кольцевые с центральным проходом пара чередуются с круговыми меньшего диаметра , обтекаемыми по краю). Струйные деаэрационные устройства имеют простую конструкцию и малое паровое сопротивление, но интенсивность деаэрации воды сравнительно низка. Колонки струйного типа имеют большую высоту (3,5-4 м и более), что требует высокого расхода металла и неудобно при ремонтных работах. Такие колонки применяются как первая ступень обработки воды в двухступенчатых деаэраторах струйно-барботажного типа.

Также существуют форсуночные (капельные) деаэраторы , где вода разбрызгивается из форсунок в капельном виде; эффективность за счёт измельчения фазы велика, однако работа форсунок ухудшается при засорении и при сниженных расходах, а на преодоление сопротивления сопел уходит очень много электроэнергии .

В деаэраторах с колонками плёночного типа поток воды расчленяется на пленки, обволакивающие насадку-заполнитель, по поверхности которой вода стекает вниз. Применяется насадка двух типов: упорядоченная и неупорядоченная. Упорядоченную насадку выполняют из вертикальных, наклонных или зигзагообразных листов, а также из укладываемых правильными рядами колец, концентрических цилиндров или других элементов. Преимущества упорядоченной насадки - возможность работы с высокими плотностями орошения при значительном подогреве воды (20-30 °C) и возможность деаэрации неумягчённой воды. Недостаток - неравномерность распределения потока воды по насадке. Неупорядоченная насадка выполняется из небольших элементов определенной формы, засыпаемых произвольно в выделенную часть колонки (кольца, шары , сёдла , омегаобразные элементы). Она обеспечивает более высокий коэффициент массоотдачи, чем упорядоченная насадка. Пленочные деаэраторы малочувствительны к загрязнению накипью, шламом и окислами железа, но более чувствительны к перегрузке.

В деаэраторах барботажного типа поток пара, который вводится в слой воды, дробится на пузыри . Преимуществом этих деаэраторов является их компактность при высоком качестве деаэрации. В них происходит некоторый перегрев воды относительно температуры насыщения, соответствующей давлению в паровом пространстве над поверхностью. Величина перегрева определяется высотой столба жидкости над барботажным устройством. При движении увлекаемой пузырьками пара воды вверх происходит её вскипание , способствующее лучшему выделению из раствора не только кислорода , но и углекислоты , которая в деаэраторах других типов удаляется из воды не полностью; в том числе разлагаются и бикарбонаты NaHCO 3 , турбулизация жидкости. Эффективность барботажных устройств снижается при значительном уменьшении удельного расхода пара. Для обеспечения глубокой деаэрации вода в деаэраторе должна подогреваться не менее чем на 10 °C, если нет возможности для увеличения расхода выпара. Барботажные устройства могут быть затопленными в баке в виде перфорированных листов (при этом трудно обеспечить беспровальный режим) или устанавливаться в колонке в виде тарелок.

Показатели и обозначения

Производительность деаэратора - расход деаэрированной воды на выходе из деаэратора. В деаэраторах типа ДВ при использовании в качестве греющей среды (теплоносителя) перегретой деаэрированной воды расход последней в производительность не входит.

Полезная вместимость деаэраторного бака - расчетный полезный объём бака, определяемый в размере 85 % его полного объёма.

ГОСТ устанавливает ряды для подбора ёмкости баков (для ДА 1-75 м³, ДП 65-185 м³) и производительности (1-2800 /). Деаэратор обозначается по принципу ДА(ДП,ДВ)-(производительность, т/ч)/(полезная вместимость бака, м³) ; колонки отдельно КДА(КДП)-(производительность) , баки БДА(БДП)-(вместимость) .

Вихревые деаэраторы

Литература

  • Рихтер Л. А., Елизаров Д. П., Лавыгин В. М. Глава третья. Деаэраторы // Вспомогательное оборудование тепловых электростанций. - М .: Энергоатомиздат, 1987. - 216 с.
  • Кувшинов О. М. Ржа? Долой кислород! . kwark.ru . «Наука и жизнь » № 12 (2006). Архивировано из первоисточника 8 апреля 2012. Проверено 3 сентября 2011.
  • Кувшинов О. М. Щелевые деаэраторы КВАРК - эффективное устройство для деаэрации жидкости . kwark.ru . «Промышленная энергетика» № 7 (2007).

Подпитка теплосети на некоторых ТЭЦ достигает 2-4 тыс. т воды в час. Для деаэрации воды используется морально устаревшая техника, созданная в первой половине или в середине 20-го века. Это атмосферные деаэраторы ДА и ДСА и вакуумные деаэраторы типа ДСВ - струйные и струйно-барботажные деаэраторы, работающие на экстенсивных принципах тепло- и массообмена между деаэрируемой водой и деаэрирующим агентом - паром. В вакуумных деаэраторах типа ДСВ-800 и ДСВ-400 в качестве деаэрирующего агента применяется вода, перегретая выше температуры кипения при расчетном вакууме. При снижении давления перегретая вода вскипает, образуя пар, который барботируется через слой деаэрируемой воды и контактирует в противотоке со струями деаэрируемой воды, диспергируемыми при прохождении дырчатых тарелок.

Недостатки работы типовых вакуумных деаэраторов ДСВ:

■ резкое снижение качества деаэрации при нагрузках деаэратора выше 50% (по общему потоку воды);

■ снижение качества деаэрированной воды при переменных нагрузках;

■ перерасход электроэнергии на перекачку греющей воды из теплосети и обратно в сеть через деаэраторы при снижении давления воды до атмосферного;

■ потери пара на обеспечение вакуума паровыми эжекторами;

■ высокие затраты труда на обслуживание и ремонт большого количества деаэраторов, работающих при малых нагрузках.

Реконструкция деаэраторов

Решение проблемы деаэрации подпиточной воды на ТЭЦ с открытыми системами теплоснабжения рассмотрим на примере ТЭЦ-5 г. Омска .

На ТЭЦ-5 установлено 8 вакуумных деаэраторов типа ДСВ (ДСВ-800 - 7 шт. и ДСВ-400 - 1 шт.). Потери воды в теплосети составляют 1600 т/ч, которые должны восполняться деаэрируемой водой. В деаэраторы поступает 1600 т/ч деаэрируемой воды с температурой 20 О С и 1400 т/ч греющей воды с температурой 100 О С из теплосети. Суммарная производительность деаэраторов и общая подпитка теплосети составляет 3000 т/ч (53% деаэрируемой воды и 47% греющей). Температура деаэрированной воды - 57-62 О С. Процесс деаэрации происходит при глубоком вакууме.

Для осуществления этого проекта:

■ из деаэрационного бака деаэратора ДСВ-800 удаляют все устройства;

■ изготавливают и устанавливают над баком центробежновихревой деаэратор ДЦВ-800;

■ в верхней части бака устанавливают диспергаторы воды, поступающей в бак из ДЦВ-800;

■ на выпарном трубопроводе устанавливают подогреватель низкого давления в качестве охладителя выпара;

■ перед деаэратором устанавливают подогреватель деаэрированной воды, способный нагреть воду до 85 О С.

Деаэрационная установка работает без подачи в деаэратор пара или греющей воды, т.е. на, так называемом, «начальном эффекте». Вода вскипает, образуя выпар, с которым удаляются агрессивные газы. Схема реконструкции предусматривает также использование конденсата выпара в качестве обессоленной воды для паровых колов. Охлаждение воды в деаэраторе на 10 О С за счет образования выпара обеспечивает 16 кг конденсата на каждую тонну деаэрированной воды.

В результате реконструкции достигается следующее:

■ вместо восьми деаэраторов в работе остаются только два. Подпитка теплосети через деаэраторы сокращается с 3000 до 1600 т/ч (за счет ликвидации рециркуляции сетевой воды из теплосети в деаэраторы). Происходит перераспределение потоков греющего пара без увеличения количества отбираемого от турбин пара;

■ повышается температура нагреваемой в деаэраторе воды до 85 О С, вместо 50-65 О С, что приведет к уничтожению бактерий, находящихся в подпиточной воде;

■ обеспечивается высокое качество деаэрированной воды;

■ деаэратор может работать, как агрегат двойного назначения (деаэрация воды и выработка конденсата, один деаэратор выработает 12800 кг/ч конденсата, два - 25600 т/ч. При повышении температуры деаэрируемой воды можно увеличить количество получаемого конденсата).

Другим примером эффективного решения проблемы деаэрации является реконструкция деаэрационной установки в Кировской районной котельной г. Омска в 2008 г. Неработающий сетевой атмосферный деаэратор ДСА-300 был реконструирован в вакуумный производительностью 600 т/ч по указанной ниже схеме (рис. 2).

Деаэрируемая вода нагревается до 85 О С в паровом подогревателе 6, подается в ДЦВ-600 (первую ступень деаэрационной установки), где удаляется 98% агрессивных газов. Далее, частично деаэрированная вода, подается в капельный деаэратор 2, где удаляются остатки агрессивных газов (до значений ниже установленных норм). Деаэрация воды происходит за счет мгновенного испарения воды, перегретой выше температуры кипения, соответствующей вакууму в деаэраторе. Выпар поступает в контактный охладитель выпара (ОВК) 3, где конденсируется потоком деаэрируемой воды, поступающей из системы холодного водоснабжения. Из того же водопровода вода подается в водоструйный эжектор 5 (ЭВ-100 с расходом рабочей воды 100 т/ч). Вода из ОВК и из ЭВ-100 поступает в бак 8 (бак-га- зоотделитель), после которого насосом 7 подается в ДЦВ-600 через паровой подогреватель 6. Деаэрированная вода подается насосом 9 в аккумуляторные баки или непосредственно в обратный трубопровод теплосети.

После завершения реконструкции неудовлетворительно работавшие атмосферные форсуночные деаэраторы были отключены.

Ранее (в 2002 г.) аналогичная реконструкция сетевого атмосферного деаэратора в вакуумный с установкой ОВК, с увеличением производительности до 600 т/ч произведена на Черепетской ГРЭС (г. Суворов , Тульская область).

Решение проблемы кавитации насосов

Ранее проблема кавитации насосов, откачивающих деаэрированную воду из вакуумного деаэратора, решалась за счет установки деаэратора на отметке, превышающей отметку установки насоса на 14-17 м. Но в случае с деаэратором в Кировской котельной г Омска отметка установки деаэратора составила 5 м. Средний уровень воды в деаэраторном баке соответствует отметке 7 м. Всасывающий патрубок подпиточного насоса находился под вакуумом, что могло привести к кавитации и к прекращению подачи воды. Решение было найдено за счет рециркуляции 10% воды от нагнетательного патрубка насоса к рабочему колесу насоса. Трубопровод рециркуляции воды с соплом на конце был подведен к рабочему колесу насоса (рис. 3). Сопло разбивает воздушный или паровой пузырь перед рабочим колесом, что предотвращает завоздушивание или запаривание насоса (кавитацию). Такое решение позволяет работать откачивающему насосу при глубоком вакууме в баке-аккумуляторе деаэрационной установки, не поднимая бак на значительную высоту.

Ограничение области применения вакуумных деаэраторов

Согласно Постановлению Главного государственного санитарного врача РФ от 7 апреля 2009 г № 20 «Об утверждении СанПиН 2.1.4.2496-09» при открытой системе теплоснабжения деаэрация должна проводиться при температуре более 100 О С. Данное постановление трактуется как запрет на проектирование и эксплуатацию вакуумных деаэраторов при открытой системе теплоснабжения, что наносит экономике страны огромный экономический ущерб. Большинство ТЭЦ имеют вакуумную систему деаэрации. Они должны или реконструировать систему водоподготовки, или отказаться от деаэрации подпиточной воды, что приведет к коррозионному разрушению трубопроводов тепловых сетей и значительным затратам на их ремонт

Что могло послужить причиной выхода в свет такого постановления, и были ли на то причины?

Причины были. Например, в жилых домах возле котельной пос. Африканда Мурманской области (недалеко от АЭС в г. Полярные Зори) в 1999 г. при включении крана горячей воды можно было наблюдать, что из него вытекала жидкость, напоминающая в первые минуты деготь, затем воду серого цвета и только через несколько минут светлую воду.

В котельной с водогрейными котлами эксплуатировался вакуумный деаэратор ДСВ-100, осуществляющий нагрев деаэрируемой воды за счет смешения ее с греющей сетевой водой. Деаэрированная вода с температурой не более 60 О С поступала в аккумуляторный бак, из которого подавалась потребителям. Насосы рециркуляции воды водогрейных котлов были демонтированы, что не позволяло держать температуру греющей воды за котлами выше, чем предусматривал график отпуска тепла 95/70 О С (рециркуляционный насос позволяет, не нарушая температурного графика отпуска тепла, иметь большую температуру воды за котлом для работы деаэратора).

Из-за недостаточно высокой температуры деаэрированной воды в аккумуляторном баке развивались микроорганизмы, которые за несколько лет эксплуатации образовали на стенках бака колонии в виде черной грязи толщиной в несколько сантиметров. Эта грязь и попадала в систему ГВС.

Но даже в таких котельных можно эффективно решить все вопросы - восстановить рециркуляционные насосы и обеспечить достаточный нагрев воды для работы деаэраторов. Если бы вакуумные деаэраторы работали при температуре 80 О С, то не образовался бы такой слой колоний микроорганизмов. Можно было бы обязать периодически дезинфицировать аккумуляторные баки горячей водой с температурой 100 О С.

Другим примером (трагическим, но не показательным) является нарушение санитарно-эпидемиологических норм при подаче воды в систему ГВС в г. Верхняя Пышма летом 2007 г. в результате чего легионелезом было инфицировано 73 человека, пятеро скончались. Причиной стало нарушение технических регламентов и подача горячей воды с температурой ниже нормативной в трубопровод, который до этого был отключен от системы ГВС на срок 10 дней (деаэраторы в этом случае были не причем).

В большинстве же случаев причиной попадания микроорганизмов в систему горячего теплоснабжения являются не вакуумные деаэраторы, а аккумуляторные баки, эксплуатируемые без надзора. Микроорганизмы попадают в аккумуляторный бак с атмосферным воздухом, который заполняет его при периодическом опорожнении бака. Микроорганизмы осаждаются на стенках и размножаются, находясь над уровнем воды, когда и температура невысокая, и достаточно кислорода и влаги.

Следует заметить, что в атмосферных деаэраторах, несмотря на то, что они работают при температуре 104 О С, деаэрируемую воду перед подачей в аккумуляторные баки охлаждают до 70-80 О С, и микроорганизмы все равно могут развиваться в аккумуляторных баках, если их периодически не дезинфицировать.

Действительно ли при 80 О С микроорганизмы не прекращают свое развитие и продолжают образовывать колонии? Если бы в Постановлении было указано 80 О С вместо «более 100 О С», это могло спасти прогрессивное направление деаэрации - вакуумную деаэрацию (но только при условии развития новых способов вакуумной деаэрации вместо устаревшей).

Для решения возникшей проблемы применения вакуумных деаэраторов предлагается следующее:

■ разрешить работу вакуумных деаэраторов для деаэрации воды в системах с открытым водоразбором с температурой нагрева деаэрируемой воды до 80-85 О С;

■ обеспечить контроль наличия бактерий в системе теплоснабжения и периодическую дезинфекцию аккумуляторных баков;

■ восстановить (или установить) на водогрейных котлах рециркуляционные насосы, позволяющие повысить потенциал греющей воды для собственных нужд без нарушения температурного графика теплопотребления;

■ при отсутствии аккумуляторных баков деаэрированной воды не ограничивать степень нагрева воды перед вакуумными деаэраторами значением 80 О С (можно снизить до 70 О С, т.к. в нагретой до этой температуры проточной воде меньше микроорганизмов, чем в холодной водопроводной);

■ при решении вопроса понижения температуры воды в деаэраторах со 101 до 80 О С учитывать, что часть теплосетей работают по температурному графику 150/70 О С, т.е. независимо от температуры подпиточной воды, температура воды в теплосети в зимний и осенне-весенний период превышает 100 О С.

Лабораторная работа №4

ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И СХЕМ ДЕАЭРАТОРОВ

Цели работы: изучить принцип действия и схемы деаэраторов, лабораторное оборудование, позволяющее произвести деаэрацию, изучить порядок работы деаэратора, произвести рабочее очищение воды.

1. Общие сведения

Деаэрация питательной воды паровых котлов и подпиточной воды тепловых сетей является обязательной для всех котельных. Деаэраторы предназначены для удаления из воды растворенных в ней неконденсирующихся газов. Присутствие в питательной и подпиточной воде кислорода и углекислоты приводят к коррозии питательных трубопроводов, кипятильных труб, барабанов котлов и сетевых трубопроводов, что может привести к тяжелой аварии. Наличие даже таких инертных газов, как азот, также крайне нежелательно, оно препятствует теплопередаче и снижает теплопроизводительность подогревателей.

Количество остаточного содержания О 2 и СО 2 в питательной воде паровых котлов строго регламентируется правилами Госгортехнадзора . Так для котлов со стальным экономайзером при давлении до 1,4 МПа содержание О 2 должно быть не более 30 мкг/кг. Свободная углекислота (СО 2) в питательной воде после деаэраторов должна отсутствовать.

Для деаэрации питательной воды в котельных, применяются струйные смешивающие термические деаэраторы. В зависимости от давления, поддерживаемого в деаэраторе, различают деаэраторы повышенного давления, атмосферные и вакуумные деаэраторы. В котельных установках с паровыми котлами на давление до 4,0 МПа применяют атмосферные деаэраторы.

2. Термическая деаэрация воды

Термическая деаэрация воды. В воде тепло­энергетических установок растворены и требуют удале­ния коррозионно-агрессивные (O2, CO2, NH3) и прочие газы. Удаление газов из воды производят в основном с помощью термических деаэраторов, декарбонизаторов и химическим способом.

Термическая деаэрация (дегазация) воды основана на законе Генри - Дальтона, выражающемся примени­тельно к данному случаю следующим уравнением, спра­ведливым для условий равновесия:

m = kppг = kр (p - pп),

где т - растворимость газов в воде;

р - суммарное давление газа и водяных паров в пространстве над во­дой;

рп, рг - парциальные давления соответственно пара и газа в том же пространстве;

kр-коэффициент раст­воримости газа в воде, зависящий от температуры (чем выше температура, тем меньше коэффициент раствори­мости).

Если воду нагреть до температуры кипения, то, с одной стороны, коэффициенты растворимости газов в воде становятся равными нулю, а с другой стороны, пар­циальное давление пара над поверхностью воды стано­вится равным суммарному давлению смеси. В итоге рав­новесия растворимость газов в воде становится равной нулю. Отсюда вывод: для удаления из воды растворен­ных в ней газов достаточно нагреть ее до температуры кипения. В этом и заключается суть термической дега­зации.

Уравнение (18.2.1) характеризует предельное состоя­ние равновесия, к которому придет система, если будут созданы определенные условия и предоставлено системе достаточно

времени. Рассмотрим вкратце эти условия.

Из изложенного следует, что воду необходимо на­греть. Обычно деаэрируемую воду, стекающую струйка­ми, каплями и пленкой, нагревают протекающим на­встречу паром. Тогда необходимое количество теплоты Q для нагрева в единицу времени воды в количестве W от начальной температуры t1 до температуры кипения tв (и соответствующих значений энтальпии i1, i")

где F - площадь поверхности теплообмена;

t ср - сред­няя для условий теплообмена температура воды;

t - температурный напор;

 - коэффициент теплоотдачи.

Правая часть уравнения (18.2.2) позволяет заклю­чить, что площадь поверхности теплообмена желательно сделать как можно больше. Это дает возможность уско­рить процесс теплообмена и уменьшить габариты аппа­рата. Решая эти задачи, потек воды дробят на струи, капли или тонкие пленки. Для обеспечения максималь­ного температурного напора создают противоток пара и воды. Дробление потока и особенно сток ее тонкими пленками обеспечивают турбулизацию потока и соответ­ственно увеличение коэффициента теплоотдачи.

Этими же средствами добиваются увеличения скорости десорбции газа из воды, поскольку количество уда­ляемого из нее в единицу времени остью концентраций газа в воде и в пространстве над водой, а следовательно, с учетом. (18.2.1), разностью давлений газа в соответствии с уравнением

m = k д F p = k д F (pr .p - pr), (18.2.3)

где pr.p – так называемое равновесное парциальное давление газа в воде, оно отвечает концентрации газа в воде в условиях равновесия в соответствии с (18.2.1.);

pr – парциальное давление газа над водой;

kд – коэффициент десорбции, зависящий от турбулентности потока воды, вязкости, поверхностного натяжения, скорости диффузии газа в воде, а следовательно, от температуры.

Для достижения минимального парциального давле­ния газа в пространстве над водой осуществляют непре­рывное удаление газов (с примесью паров) из рабочего пространства деаэратора через специальный штуцер для отвода выпара деаэратора. Если деаэратор вакуумный (т. е. давление в нем меньше атмосферного), то осуще­ствляют отсос воздуха пароструйными или водоструйны­ми эжекторами.

Примеры конструктивного выполнения деаэраторов приведены на рис. 12.2.3, 12.2.4. В первом из этих случа­ев реализован пленочный принцип дробления потока во­ды, во втором-струйный. На рис. 12.2.4 в качестве вто­рой ступени дегазации применяют барботаж, т. е. пропускают пузырьки пара через слой воды. Барботаж применяется для более полной дегазации воды, особен­но для более полного удаления двуокиси углерода.

На промышленных ТЭЦ деаэраторы чаще всего пи­таются паром из промышленного регулируемого отбора турбины, а на конденсационных электростанциях - из нерегулируемых отборов турбин (рис. 18.2.5). При дега­зации питательной воды на ТЭС деаэратор одновремен­но выполняет функцию подогревателя очередной сту­пени подогрева в системе регенерации.

Деаэраторы типа изображенного на рис. 12.2.4 назы­вают деаэраторами «перегретой» воды. Деаэраторы не требуют подачи на них греющего пара, пар в них обра­зуется в результате

дросселирования нагретой воды до такого давления, температура насыщения при котором меньше температуры воды, поступающей на деаэратор. Эта вода оказывается предварительно как бы перегре­той сверх температуры в деаэраторе, до которой охлаж­дается в результате дросселирования и частичного превращения в пар.

В конденсаторах паровых турбин происходит доста­точно полное удаление газов из основного конденсата» т. е. конденсатор одновременно выполняет роль деаэратора.

Рис. 18.2.5. Схемы включения деаэраторов питательной воды.

а-в качестве самостоятельной ступени регенеративного подогрева воды; б- в качестве предвключенного подогревателя в данной ступени подогрева; в - к регулируемому отбору на ТЭЦ; /-.парогенератор; 2 -турбина; 3-кон­денсатор; 4 - конденсатный насос; 5 - подогреватель низкого давления- 6- деаэратор; 7 - питательный насос; 8 - подогреватель высокого давления- 9- регулятор давления.

Однако из-за присосов воздуха через сальники конденсатных насосов и другие неплотности в вакуумной системе турбин конденсат вновь загрязняется газами. Эти газы затем удаляются в деаэраторах атмосферного типа (с давлением несколько выше атмосферного) или в деаэраторах повышенного давления (с давлением, в несколько раз превышающим атмосферное).

Атмосферный деаэратор состоит из цилиндрической деаэрационной колонки и бака питательной воды. Потоки деаэрируемой воды поступают в распределитель воды, из которого равномерно по кольцевому сечению колонки стекают на перфорированные противни. Проходя через отверстия противней, вода, разбивается на мелкие струйки и падает вниз. В нижнюю часть деаэраторной колонки подводится пар для нагрева деаэрируемой воды до температуры кипения. При температуре воды, равной температуре кипения, растворимость газов в воде равна нулю, чем и обусловливается удаление из воды кислорода и углекислоты. Выделяющийся кислород и углекислота с небольшим количеством пара удаляется через вестовую трубу вверху деаэрационной колонки. Для эффективной работы деаэрационной колонки необходимо, чтобы выделяющиеся из воды газы достаточно быстро удалялись из колонки, что обеспечивается выпаром. Количество выпара принимают равным 2 кг на 1 т деаэрированной воды.

Деаэрационные колонки не рассчитаны на подогрев воды более чем на 10-40 о С. Оптимальный режим работы деаэраторной колонки, т.е. наилучшее удаление газов из питательной воды, имеет место, когда средняя температура всех потоков воды, входящих в колонку, на 10-15 о С ниже температуры кипения при давлении, поддерживаемом в деаэраторе. Для полной деаэрации питательной воды совершенно необходимым условием является нагрев ее до температуры кипения. Недогрев воды даже на несколько градусов приводит к резкому увеличению остаточного содержания в ней кислорода. Поэтому деаэраторы обязательно снабжаются автоматическими регуляторами, поддерживающими соответствие между поступлением пара и воды в колонку.

Схемы деаэраторов

а – атмосферного; б – барботажного; 1 – бак; 2 – выпуск питательной воды;

3 – водоуказательное стекло; 4 – предохранительный клапан; 5 – тарелки; 6 – вход химически очищенной воды; 7 – вестовая труба; 8 – вход конденсата; 9 – деаэраторная колонка; 10 – вход пара; 11 – гидравлический затвор; 12 – лоток; 13 – решетка; 14 – перегородка с жалюзи.

Количество и производительность устанавливаемых деаэраторов питательной воды выбираются из расчета полного покрытия расхода питательной воды котлами с учетом их продувки и расхода питательной воды на впрыск в РОУ при максимально-зимнем режиме. Должно быть установлено не меньше двух деаэраторов. Резервные деаэраторы не устанавливаются. Полезная суммарная емкость баков питательной воды должна обеспечивать запас ее не менее чем на 15 мин при максимально-зимнем режиме. Полезная емкость баков принимается равной 85% их геометрической емкости.

Подпиточная вода также во всех случаях должна подвергаться деаэрации. Содержание кислорода в подпиточной воде должно быть не более 50 мкг/кг, а свободная углекислота должна полностью отсутствовать. В системах теплоснабжения с непосредственным водоразбором качество подпиточной воды, кроме того, должно удовлетворять ГОСТ 2874-82 «Вода питьевая».

Деаэрация подпиточной воды осуществляется либо в термических смешивающих атмосферных деаэраторах, либо в вакуумных деаэраторах.

Деаэраторы должны устанавливаться на площадках с отметкой, превышающей отметку установки питательных насосов. Величина этого превышения определяется суммой требуемого подпора воды при входе в насос, задаваемого заводом-изготовителем насоса, и требуемого гидростатического напора для преодоления сопротивления трубопроводов от деаэратора до насоса. Для котлов на давления ~4,0 и 1,4 МПа (40 и 14 кгс/см2) отметка площадки деаэраторов соответственно 10 и 6 м.

В центральных котельных установках, работающих на крупные системы теплоснабжения с открытым водоразбором, требующие деаэрации подпиточной воды в количествах, измеряемых сотнями тонн, предпочтительна установка вакуумных подпиточных деаэраторов. Подпиточная установка с атмосферными деаэраторами при больших расходах подпиточной воды из-за ограниченной единичной производительности атмосферных деаэраторов (максимум 300 т/ч) и необходимости установки за ними охладителей подпиточной воды (до 70 о С) получается очень громоздкой и дорогой. Кроме того, подпиточные установки с атмосферными деаэраторами обладают еще одним существенным недостатком: в целях сохранения конденсата греющего пара химически очищенную воду, подаваемую в деаэраторы, необходимо предварительно подогревать до 90 о С.

Подогрев ее производится в водо-водяных теплообменниках-охладителях деаэрированной подпиточной воды и в пароводяных подогревателях. Эти подогреватели, а также трубопроводы за ними подвержены интенсивному коррозионному разрушению и не обеспечивают необходимой длительности эксплуатации узла подпитки теплосети.

Деаэрация подпиточной воды под вакуумом позволяет избавиться от перечисленных выше недостатков подпиточной установки. Промышленность выпускает вакуумные деаэраторы единичной производительностью до 2000 т/ч, температура выдаваемой деаэратором подпиточной воды 40 о С, при этом не требуется установка специальных охладителей. При вакууме в деаэраторе ~0,0075 МПа (0,075 кгс/см2) при температуре деаэрации 40 о С не требуется предварительный подогрев подаваемой в деаэратор химически очищенной воды, конструкция ДСВ обеспечивает подогрев деаэрируемой воды в самом аппарате на 15-25 о С.

При использовании для деаэрации подпиточной воды в небольших вакуумных деаэраторах, работающих под вакуумом – давление ~0,03 МПа (0,3 кгс/см2), создаваемый водоструйными эжекторами или водокольцевыми насосами, процесс деаэрации протекает при температуре 70оС. При этом подаваемую в деаэраторы химически очищенную воду нужно предварительно подогревать только до 50оС.

В паровых промышленно-отопительных котельных при закрытых системах теплоснабжения, где расход подпиточной воды определяется только утечками теплосети, подпитку теплосети разрешается производить водой из деаэраторов питательной воды. Технические характеристики деаэраторов приведены в таблицах 10.1 и 10.2 (см. приложение).

3. Охладители выпара деаэраторов

Удаление из деаэраторной колонки выделившихся кислорода и углекислоты производится через вестовую трубу в крышке деаэраторной колонки. Вместе с кислородом и углекислотой из колонки выходит некоторое количество пара и уносит с собой тепло, которое при сбросе выпара в атмосферу теряется. В целях использования тепла выпара деаэраторы снабжаются специальными поверхностными теплообменниками-охладителями выпара, в которых производится конденсация выпара химочищенной водой, подаваемой в деаэратор.

4. Питательные насосы

Питательные устройства являются ответственными элементами котельной установки, обеспечивающими безопасность ее эксплуатации. Правила Госгортехнадзора предъявляют ряд требований к питательным установкам.

Питательные устройства должны обеспечивать необходимый расход питательной воды, при давлении, соответствующем полному открытию рабочих предохранительных клапанов, установленных на паровом котле. Суммарная производительность основных насосов должна быть не менее 110% для всех рабочих котлов при их номинальной паропроизводительности с учетом расходов на непрерывную продувку, на пароохладители, редукционно-охладительные и охладительные установки. Суммарная производительность питательных резервных насосов должна обеспечивать 50% нормальной производительности всех работающих котлов с учетом продувки, расхода воды на редукционно-охладительные и охладительные установки. При выборе насоса надо стремиться к тому, чтобы в рабочих условиях загрузка насоса была близкой к номинальной. При установке нескольких центробежных насосов для параллельной работы нужно устанавливать насосы с одинаковой характеристикой. Загрузка насосов с разными характеристиками в процессе регулирования производительности изменяется неравномерно, и насосы могут не обеспечить нужную подачу воды в режимах, отличных от номинального (на которую они выбраны), либо будут работать неэкономично.

Расчетный напор питательного насоса Рнас, Па, определяется из следующего выражения:

Рнас = Рк (1 + Р) + Рэк + Рп.в.д +
,

где Рк – избыточное давление в барабане котла;

р – запас давления на открытие предохранительных клапанов, принимаемый равным 5%;

Рк – сопротивление водяного экономайзера котла;

Рп.в.д – сопротивление регенеративных подогревателей высокого давления;

Рнаг тр – сопротивление питательных трубопроводов от насоса до котла с учетом сопротивления автоматических регуляторов питания котлов;

Рвсос тр – сопротивление всасывающих трубопроводов;

Рс.в – давление, создаваемое столбом воды, равным по высоте расстоянию между осью барабана котла и осью деаэратора;

Рдр – давление в деаэраторе.

При подсчете сопротивлений плотность воды принимается по средней температуре ее в нагнетательном тракте, включая водяной экономайзер.

Определенное расчетом давление в нагнетательном патрубке питательных насосов должно быть увеличено на 5-10% для запаса на непредвиденное увеличение сопротивления питательного тракта. На напорном патрубке питательного центробежного насоса обязательно устанавливается обратный клапан.

Работа питательных насосов с производительностью ниже 10-15% номинального расхода не разрешается, так как это приводит к «запариванию» насосов. Для защиты от снижения расхода питательной воды сверх допустимого насосы снабжаются специальными сбросными клапанами и линиями рециркуляции, соединяющими их с деаэраторами, куда производится сброс воды. Рециркуляционные линии включаются при запуске и остановке насосов. Запорные клапаны на этих линиях имеют ручное управление. Обратные клапаны, устанавливаемые за насосами, имеют патрубки для подключения рециркуляционных линий.

Номенклатура питательных насосов для котлов, используемых в котельных, приведена в таблице 10.5. Как питательные центробежные насосы, так и паровые должны устанавливаться на отметке 0,0 под деаэраторами или при небольшом удалении от них, чтобы сопротивление всасывающих трубопроводов было по возможности малым, согласно нормам технологического проектирования – не более 10000 Па (1000 мм вод. ст.).



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии Как приготовить творожный десерт с желатином Как приготовить творожный десерт с желатином