Расчет горячего водоснабжения: контроль качества и перерасчеты. Примеры расчета систем горячего водоснабжения

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Средняя часовая тепловая нагрузка горячего водоснабжения потребителя тепловой энергии Q hm , Гкал/ч, в отопительный период определяется по формуле:

Q hm =/T(3.3)

a= 100 л/сут - норма затрат воды на горячее водоснабжение;

N =4 - количество человек;

Т = 24 ч – продолжительность функционирования системы горячего водоснабжения абонента в сутки, ч;

t c - температура водопроводной воды в отопительный период, °С; при отсутствии достоверной информации принимаетсяt c = 5 °С;

Q hm =100∙4∙(55-5)∙10 -6 /24=833,3∙10 -6 Гкал/ч= 969 Вт

3.3 Общий расход теплоты и расход газа

Для проектирования выбирается котел двухконтурный. При расчете расхода газа учитывается, что котел на отопление и ГВС работает раздельно, то есть при включении контура ГВС контур отопления отключается. Значит общий расход теплоты будет равен максимальному расходу. В данном случае максимальный расход теплоты на отопление.

1. ∑Q = Q omax = 6109 ккал/ч

2. Определим расход газа по формуле:

V =∑Q /(η ∙Q н р), (3.4)

где Q н р =34 МДж/м 3 =8126 ккал/м 3 - низшая теплота сгорания газа;

η – КПД котла;

V = 6109/(0,91/8126)=0,83 м 3 /ч

Для коттеджа выбираем

1. Котел двухконтурный АОГВ-8, тепловая мощность Q=8 кВт, расход газа V=0,8 м 3 /ч, номинальное входное давление природного газа Рном=1274-1764 Па;

2. Плита газовая, 4-х конфорочная, ГП 400 МС-2п, расход газа V=1,25м 3

Общий расход газа на 1 дом:

Vг =N∙(Vпг ∙Kо +V2-котла ∙ К кот), (3.5)

где Kо=0,7-коэффициент одновременности для газовой плиты принимаемый по таблице в зависимости от количества квартир;

К кот =1- коэффициент одновременности для котла по таблице 5 ;

N-количество домов.

Vг =1,25∙1+0,8∙0,85 =1,93 м 3 /ч

Для 67 домов:

Vг =67∙(1,25∙0,2179+0,8∙0,85)=63,08 м 3 /ч

3.4 Расчетные тепловые нагрузки школы

Расчет нагрузок на отопление

Расчетную часовую тепловую нагрузку отопления отдельного здания определяем по укрупненным показателям:

Q o =η∙α∙V∙q 0 ∙(t п -t o)∙(1+K и.р.)∙10 -6 (3.6)

где - поправочный коэффициент, учитывающий отличие расчетной температуры наружного воздуха для проектирования отопленияt o отt o = -30 °С, при которой определено соответствующее значение, принимается по приложению 3 , α=0,94;

V- объем здания по наружному обмеру,V=2361 м 3 ;

q o - удельная отопительная характеристика здания приt o = -30 °, принимаемq o =0,523 Вт/(м 3 ∙◦С)

t п - расчетная температура воздуха в отапливаемом здании, принимаем 16°С

t о - расчетная температура наружного воздуха для проектирования отопления (t о =-34◦С)

η- КПД котла;

K и.р - расчетный коэффициент инфильтрации, обусловленной тепловым и ветровым напором, т.е. соотношение тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре наружного воздуха, расчетной для проектирования отопления. Рассчитывается по формуле:

K и.р =10 -2 ∙ 1/2 (3.7)

где g- ускорение свободного падения, м/с 2 ;

L-свободная высота здания, принимаем равной 5 м;

ω - расчетная для данной местности скорость ветра в отопительный период, ω=3м/с

K и.р =10 -2 ∙ 1/2 =0,044

Q o =0,91∙0,94∙2361∙(16+34)∙(1+0,044)∙0,39 ∙10 -6 =49622,647∙10 -6 Вт.

Расчет нагрузок на вентиляцию

При отсутствии проекта вентилируемого здания расчетный расход те плоты на вентиляцию, Вт [ккал/ ч], определятся по формуле для укрупненных расчетов:

Q в = V н ∙q v ∙(t i - t о), (3.8)

где V н - объем здания по наружному обмеру, м 3 ;

q v - удельная вентиляционная характеристика здания, Вт/(м 3 ·°С) [ккал/(ч·м 3 ·°С)], принимается по расчету; при отсутствии данных по табл. 6 для общественных зданий ;

t j , - средняя температура внутреннего воздуха вентилируемых помещений здания, 16 °С;

t о, - расчетная температура наружного воздуха для проектирования отопления, -34°С,

Q в = 2361∙0,09(16+34)=10624,5

где M – расчетное количество потребителей;

a – норма расхода воды на горячее водоснабжение при температуре

t г = 55 0 С на одного человека в сутки, кг/(сут×чел);

b – расход горячей воды с температурой t г = 55 0 С, кг (л) для общественных зданий, отнесенный к одному жителю района; при отсутствии более точных данных рекомендуется принимать b = 25 кг в сутки на одного человека, кг/(сут×чел);

c p ср =4,19 кДж/(кг×К) – удельная теплоемкость воды при ее средней температуре t ср = (t г -t х)/2;

t х – температура холодной воды в отопительный период (при отсутствии данных принимается равной 5 0 С);

n c – расчетная длительность подачи теплоты на горячее водоснабжение, с/сут; при круглосуточной подаче n c =24×3600=86400 с;

коэффициент 1,2 учитывает выстывание горячей воды в абонентских системах горячего водоснабжения.

Q гвс =1,2∙300∙ (5+25) ∙ (55-5) ∙4,19/86400=26187,5 Вт

Основными параметрами жилых домов является водоснабжение, канализационная система и подача электрической энергии. В независимости от количества жильцов (частный дом или многоэтажный), расчёт основных сетей должен производится согласно некоторым правилам, с применением соответствующих формул. Для создания правильной электрической схемы требуется не так много времени, гораздо тяжелее определиться с водоснабжением. Особенную трудность составляет проектировка и расчёт подачи горячей воды. Чтобы правильно произвести все операции, требуется знать не только техническую сторону вопроса, но и нормативную базу.

Наиболее часто выбирают циркуляционную разновидность сетей. Принцип действия такой системы заключается в постоянной циркуляции жидкости. Единственным недостатком циркуляционной системы горячего водоснабжения является слишком высокая стоимость. Расходы оправдываются лишь в том случае, когда достигается максимальное количество пользователей для жилого дома.

Также, помимо высокой ценовой политики, постоянная циркуляция воды приводит к существенным тепловым потерям, что влечёт за собой дополнительные расходы. При наличии циркуляционной системы, проектировщики стараются максимально сократить протяжённость трубопровода. Такой вариант позволяет создать дополнительную экономию на транспортировке жидкости.

Что такое период ожидания и как производится его расчёт

Период ожидания – это временной промежуток, который проходит со времени открытия крана пользователем и до момента подачи горячей воды. Данное время стараются максимально сократить, для этого систему горячего водоснабжения оптимизируют, вносят коррективы, при плохих показателях – модернизируют.

Для установки периода ожидания, используются общепринятые нормы. Чтобы его правильно рассчитать, следует знать следующее:

  • Для уменьшения периода ожидания, следует создать высокое давление воды в системе. Но установка завышенных параметров давления может привести к повреждению трубопровода.
  • Для уменьшения периода ожидания, увеличивают пропускную способность прибора, через который пользователь получает жидкость.
  • Период ожидания увеличивается прямопропорционально внутреннего диаметра трубопровода, а также при наличии контура на большом расстоянии от потребителя.

Правильная последовательность расчёта периода ожидания:

  • Определение количества потребителей. После точной цифры, следует сделать небольшой запас, так как существуют пиковые расходы горячей воды.
  • Определение характеристик трубопровода: длина, внутренний диаметр труб, а также материал, из которого они изготовлены.
  • Умножение длины трубопровода и его внутреннего диаметра на удельный объём воды, который измеряется в л/с.
  • Определение кратчайшего и наиболее удобного пути жидкости. В этот параметр также входят участки контура, расположенные наиболее далеко от водоразборного прибора. Также производится сложение всех объёмов воды.
  • Сумму жидкости делят на расход воды, осуществляемый за одну секунду. При получении данного параметра также учитывается общее давление жидкости в системе.

Чтобы добиться максимально точных результатов, следует правильно рассчитать удельный объём трубопровода. Для этого применяется следующая формула:

Cs = 10 (F/100)2 3,14/4, где F – это внутренний диаметр трубопровода.

При определении удельного объёма нельзя использовать значение как внешнего, так и номинального диаметра труб. Это существенно снизит точность вычислений. Существуют таблицы, в которых значение удельного объёма заранее рассчитано для определённых материалов (медь и сталь).

Расчёт потребления горячей воды за сутки

Количество горячей воды, которое необходимо пользователю на сутки, является параметром, рассчитанным заранее. Обычно такие данные берут из таблиц, где они разделяются по типу помещения и его квадратуре. Не следует путать европейские параметры и других стран, они разительно отличаются друг от друга.

В среднем, расход горячей воды на человека за сутки составляет от 25 до 50 литров. Составить и рассчитать количество горячей воды на человека, возможно только после того, как будет известен статус помещения или постройки.

Как произвести расчёт трубопровода

Для длительной эксплуатации системы транспортировки горячей жидкости, следует проводить расчёт трубопровода в условиях пиковых нагрузок. Это позволяет сделать определённый запас, который исключит возникновение неисправностей в системе при резком увеличение давления.

Для расчёта трубопровода, чаще всего, используют готовые диаграммы и таблицы с соответствующими данными. За материал чаще всего берут медь или оцинкованную сталь. Следует знать, что важным параметром расчёта является эквивалентный прибор Fixture Unit. Данный прибор называют условным элементом для определённого типа водоразборных механизмов.

Последовательность расчёта трубопровода:

  • Расчёт начинается с определения параметра Fixture Unit, который является обязательным для каждой точки водоразбора.
  • Основная сеть транспортировки горячей воды делится на отдельные участки (узлы). В основе принципа лежит проектировка отопительной системы.
  • Находят общее количество Fixture Unit, которые будут расположены на различных участках.
  • На основе общей суммы Fixture Unit и типа здания, находят расчётный расход на каждом участке системы.
  • Расчётный расход, также обозначается как пропускной объём, является важной составляющей при определении диаметра трубопровода. Внутренний диаметр труб определяется с таким условием, что конечные цифры не будут превышать общеустановленные границы.

При расчётах циркуляционной сети можно использовать общее положение, что на каждый элемент Fixture Unit приходится 3 л/с. Отдельным пунктом идёт расчёт рециркуляционного насоса, который имеет определённую пропускную мощность. Для определения данного параметра необходимо знать точное количество водоразборных точек.

Для обеспечения циркуляционной сети дополнительной экономией, на насос устанавливается термостат. Термостат обеспечивает включение устройства при падении температуры транспортируемой жидкости. Когда температура воды на обратном контуре достигает значения меньше номинального на 5 градусов – насос отключается.

Что необходимо иметь для начала расчёта горячего водоснабжения

Невозможно начинать расчёт системы горячего водоснабжения, не имея технической и проектной документации на дом. При этом, размеры дома не важны, для частного участка требуется такой же план, как и для многоэтажного строения.

Расчёт начинается с заверенного архитектурного плана, на котором выбрано правильное расположение строения, а также размещение санитарно-технических приборов. Расположение дома поможет выбрать подвод системы водоснабжения по самому короткому пути.

Необходимо знать количество людей, которое будет проживать в здание. Естественным является тот факт, что точное количество жильцов узнать не получится, поэтому расчёт лучше проводить по максимальным данным. Такие цифры позволят рассчитать правильное время пиковых нагрузок.

Установить место, на котором будет размещено оборудование горячего водоснабжения. Данный участок, в обязательном порядке должен быть указан на схеме.

Опубликовано: 05.12.2010 | |

На протяжении всего 2004 г. в нашу организацию поступали заявки на разработку технических предложений по котельным для теплоснабжения жилых и общественных зданий, в которых нагрузки на горячее водоснабжение сильно отличались (в меньшую сторону) от тех, которые запрашивались ранее для идентичных потребителей. Это послужило поводом для анализа методик определения нагрузок на горячее водоснабжение (ГВС), которые приведены в действующих СНиПах, и возможных ошибок, возникающих при их применении на практике.
Е.О. СИБИРКО

В настоящее время порядок определения тепловых нагрузок на ГВС регламентируется нормативным документом СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий».

Методика определения расчетных расходов горячей воды (максимального секундного, максимального часового и среднего часового) и тепловых потоков (тепловой мощности) в течение часа при среднем и при максимальном водопотреблении в соответствии с разделом 3 СНиП 2.04.01–85* основывается на расчете соответствующих расходов через водоразборные приборы(или группы однотипных приборов с последующим усреднением) и определении вероятности их одновременного использования.

Все служебные таблицы с данными по различным удельным нормам расхода и т.п., приведенные в СНиПе, применяются только для расчета расхода через отдельные приборы и вероятности их действия. Они не применимы для определения расходов исходя из количества потребителей, путем умножения количества потребителей на удельный расход! Именно в этом заключается основная ошибка, допускаемая многими расчетчиками при определении тепловой нагрузки на ГВС.

Изложение методики расчета в 3мразделе СНиП 2.04.01–85* не отличается простотой. Введение многочисленных надстрочных и подстрочных латинских индексов (образованных от соответствующих терминов в английском языке) еще больше затрудняет понимание смысла расчета. Не совсем понятно, зачем это сделано в российском СНиПе, - ведь далеко не все владеют английским и с легкостью ассоциируют индекс «h » (от английского hot - горячий), индекс «c » (от английского cold - холодный) и «tot »(от английского total - итог) с соответствующими русскими понятиями.

Для иллюстрации стандартной ошибки, встречающейся в расчетах потребности тепла и топлива, приведу простой пример. Необходимо определить нагрузку ГВС для 45квартирного жилого дома при числе жителей 114 человек. Температура воды в подающем трубопроводе ГВС - 55°С, температура холодной воды в зимний период -5°С. Для наглядности предположим, что в каждой квартире установлено по две однотипных водоразборных точки (мойка на кухне и умывальник в ванной).

Вариант I расчета - неправильный(мы неоднократно сталкивались с таким способом расчета):

По таблице «Нормы расхода воды потребителями» обязательного Приложения 3 СНиП 2.04.01–85* определяем для«Жилых домов квартирного типа: с ваннами длиной от 1500 до 1700 мм, оборудованных душами» расход горячей воды на одного жителя в час наибольшего водопотребления равен q hhr, u = 10 л/ч.Далее все, казалось бы, совсем просто. Общий расход горячей воды на дом в час наибольшего водопотребления исходя из количества жителей 114 человек: 10 . 114 = 1140 л/ч.

Тогда, расход тепла в час наибольшего водопотребления будет равен:

где U - число жителей в доме; г -плотность воды, 1 кг/л; с - теплоемкость воды, 1 ккал/(кг °С); t h - температура горячей воды, 55°С; t с - температура холодной воды, 5°С.

Котельная, реально построенная на основании данного расчета, явно не справлялась с нагрузкой ГВС в моменты пиковых разборов горячей воды, о чем свидетельствуют многочисленные жалобы жителей этого дома. Где же здесь ошибка? Она заключается в том, что если внимательно прочитать раздел 3 СНиП 2.04.01–85*, то выясняется, что показатель q hhr, u, приведенный в Приложении 3, используется в методике расчета только для определения вероятности действия санитарно-технических приборов, а максимальный часовой расход горячей воды определяется совсем иначе.

Вариант расчета II - в строгом соответствии с методикой СНиПа:

1. Определяем вероятность действия прибора.

,

где q hhr,u = 10 л - согласно Приложению 3 для данного вида водопотребителей; U = 114 человек - число жителей в доме; q h0 = 0,2 л/с - в соответствии с п. 3.2 для жилых и общественных зданий, допускается принимать это значение при отсутствии технических характеристик приборов; N - число санитарно-технических приборов с горячей водой, исходя из принятых нами двух точек водоразбора в каждой квартире:

N = 45 . 2 = 90 приборов.

Таким образом, получаем:

Р = (10 x 114)/(0,2 x 90 x 3600) = 0,017.

2. Теперь определим вероятность использования санитарно-технических приборов (возможность подачи прибором нормированного часового расхода воды) в течение расчетного часа:

,
где P - вероятность действия прибора, определенная в предыдущем пункте, - P = 0,017; q h0 = 0,2 л/с - секундный расход воды, отнесенный к одному прибору (также уже использовался в предыдущем пункте); q h0,hr - часовой расход воды прибором, в соответствии с п. 3.6 при отсутствии технических характеристик конкретных приборов допускается принимать q h0,hr = 200 л/ч, тогда:

.

3. Так как P h меньше 0,1, применяем далее табл. 2 Приложения 4, по которой определяем:

при .

4. Теперь мы можем определить максимальный часовой расход горячей воды:

.

5. И, наконец, определяем максимальную тепловую нагрузку ГВС (тепловой поток за период максимального водопотребления в течение часа максимального потребления):

,

где Q ht - тепловые потери.

Учтем тепловые потери, приняв их за5% от расчетной нагрузки.

.

Мы получили результат более чем в два раза превышающий результат первого расчета! Как показывает практический опыт, этот результат намного ближе к реальным потребностям в горячей воде для 45квартирного жилого дома.

Можно привести для сравнения результат расчета по старой методике, которая приводится в большинстве справочной литературы.

Вариант III. Расчет по старой методике. Максимально часовой расход тепла на нужды горячего водоснабжения для жилых зданий, гостиниц и больниц общего типа по числу потребителей (в соответствии со СНиП IIГ.8–62) определялся следующим образом:

,

где k ч - коэффициент часовой неравномерности потребления горячей воды, принимаемый, например, по табл. 1.14справочника «Наладка и эксплуатация водяных тепловых сетей» (см. табл. 1);n 1 - расчетное число потребителей; б - норма расхода горячей воды на1 потребителя, принимается по соответствующим таблицам СНиПа IIГ.8–62и для жилых зданий квартирного типа, оборудованных ванными длиной от 1500до 1700 мм, составляет 110–130 л/сутки;65 - температура горячей воды, °С; t х - температура холодной воды, °С, принимаем t х = 5°С.



Таким образом, максимально часовой расход тепла на ГВС будет равен:

.

Легко заметить, что данный результат почти совпадает с результатом, полученным по действующей методике.

Применение нормы расхода горячей воды на одного жителя в час наибольшего водопотребления (например, для«Жилых домов квартирного типа с ваннами длиной от 1500 до 1700 мм» q hhr == 10 л/ч), приведенного в обязательном Приложении 3 СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий», неправомерно для определения расхода тепла на нужды ГВС путем умножения его на количество жителей и разность температур (энтальпий) горячей и холодной воды. Данный вывод подтверждается как приведенным примером расчета, так и прямым указанием на это в учебной литературе. Например, в учебнике для ВУЗов «Теплоснабжение» под ред. А.А. Ионина (М.: Стройиздат, 1982)на стр. 14 читаем: «…Максимальный часовой расход воды G ч. max нельзя смешивать с приводимым в нормах расходом воды в час наибольшего водопотребления G и.ч. Последний как некоторый предел применяется для определения вероятности действия водоразборных приборов и становится равным G ч. max только при бесконечно большом числе водоразборных приборов». Расчет по старой методике дает гораздо более точный результат при условии применения суточных норм расхода горячей воды по нижней границе диапазонов, приведенных в соответствующих таблицах старого СНиПа, чем «упрощенный» расчет, который выполняют многие расчетчики с использованием действующего СНиП.
Данные из таблицы Приложения 3СНиП 2.04.01–85* необходимо применять именно для расчета вероятности действия водоразборных приборов, как того требует методика, изложенная в разделе 3 данного СНиПа, а затем определять бhr и вычислять расход тепла на нужды ГВС. В соответствии с примечанием в пункте 3.8 СНиП 2.04.01–85*,для вспомогательных зданий промышленных предприятий значение q hr допускается определять как сумму расходов воды на пользование душем и хозяйственно-питьевые нужды, принимаемых по обязательному Приложению 3 по числу водопотребителей в наиболее многочисленной смене.

Расчеты ГВС, БКН. Находим объем, мощность ГВС, мощность БКН(змейки), время прогрева и т.п.

В этой статье рассмотрим практические задачи для нахождения объемов накопления горячей воды, мощности нагрева ГВС. Мощности нагревательного оборудования. Время готовности горячей воды для различного оборудования и тому подобное.

Рассмотрим примеры задач:

Задача 1. Найти мощность проточного водонагревателя

Проточный водонагреватель - это водонагреватель объем воды, в котором может быть настолько мал, что его существование бесполезно для накопления воды. Поэтому считается, что проточный водонагреватель не предназначен аккумулировать горячую воду. И мы это не учитываем в расчетах.

Дано: Расход воды равен 0,2 л/сек. Температура холодной воды 15 градусов Цельсия.

Найти: Мощность проточного водонагревателя, при условии, что он нагреет воду до 45 градусов.

Решение

Ответ: Мощность проточного водонагревателя составит 25120 Вт = 25 кВт.

Практически не целесообразно потреблять большое количество электроэнергии. Поэтому необходимо аккумулировать(накапливать горячую воду) и уменьшать нагрузку на электропровода.

Проточные водонагреватели имеют не стабильный прогрев горячей воды. Температура горячей воды будет зависеть от расхода воды через проточный водонагреватель. Датчики переключения мощности или температуры не позволяют хорошо стабилизировать температуру.

Если хотите найти выходную температуру существующего проточного водонагревателя при определенном расходе.

Задача 2. Время нагрева электрического водонагревателя (бойлера)

Имеем электрический водонагреватель объемом 200 литров. Мощность электрических тэнов 3 кВт. Необходимо найти время нагрева воды с 10 градусов до 90 градусов Цельсия.

Дано:

Wт = 3кВт = 3000 Вт.

Найти: Время, за которое объем воды в баке водонагревателя нагреется с 10 до 90 градусов.

Решение

Потребляемая мощность тэнов не меняется от температуры воды в баке. (Как меняется мощность в теплообменниках, рассмотрим в другой задаче.)

Необходимо найти мощность тэнов, как для проточного водонагревателя. И этой мощности будет достаточно нагреть воду за 1 час времени.

Если известно, что с мощностью тэнов в 18,6 кВт бак нагреет воду за 1 час времени, тогда не сложно посчитать время с мощностью тэнов на 3 кВт.

Ответ: Время нагрева воды с 10 до 90 градусов с емкостью 200 литров составит 6 часов 12 минут.

Задача 3. Время нагрева бойлера косвенного нагрева

Рассмотрим для примера бойлер косвенного нагрева: Buderus Logalux SU200

Номинальная мощность: 31.5 кВт. Тут не понятно, из каких соображений это найдено. Но посмотрите таблицу ниже.

Объем 200 литров

Змейка сделана из стальной трубы DN25. Внутренний диаметр 25 мм. Наружный 32 мм.

Гидравлические потери в трубе-змейке указывают 190 мБар при расходе 2 м3/час. Что соответствует 4.6 .

Конечно, это сопротивление велико для воды и новой трубы. Скорее всего были заложены риски на зарастание трубопровода, на теплоноситель с большой вязкостью и сопротивление на соединениях. Лучше указать заведомо большие потери, чтобы кто-либо не просчитался в расчетах.

Площадь теплообмена 0,9 м2.

Помещается в трубу-змейку 6 литров воды.

Длина этой трубы-змейки примерно 12 метров.

Время прогрева пишут 25 минут. Тут не понятно, как это посчитали. Смотрим таблицу.

Таблица мощности змейки БКН

Рассмотрим таблицу определения мощности змейки

Рассмотрим SU200 мощность теплоотдачи змейки 32,8 кВт

При этом в контуре ГВС расход 805 л/час. Затекает 10 градусов выходит 45 градусов

Другой вариант

Рассмотрим SU200 мощность теплоотдачи змейки 27,5 кВт

Затекает в змейку теплоноситель с температурой 80 градусов с расходом 2 м3/час.

При этом в контуре ГВС расход 475 л/час. Затекает 10 градусов выходит 60 градусов

Другие характеристики

К сожалению, я Вам не предоставлю расчет времени нагрева бойлера косвенного нагрева. Потому что это не одна формула. Тут переплетения множество значений: Начиная от формул коэффициента теплопередачи, поправочные коэффициенты для разных теплообменников (так как конвекция воды тоже вносит свои отклонения), и заканчивается это итерацией расчетов по измененным температурам с течением времени. Тут, скорее всего в будущем я сделаю калькулятор расчета.

Вам придется довольствоваться тем, что нам говорит производитель БКН(Бойлера косвенного нагрева.)

А говорит нам производитель следующее:

Что вода будет готова через 25 минут. При условии, что затекать в змейку будет 80 градусов с расходом 2 м3/час. Мощность котла, дающий нагретый теплоноситель не должна быть ниже 31,5 кВт. Готовая к приему вода считается 45-60 градусов. 45 градусов помыться в душе. 60 это очень горячая вода, например для мыться посуды.

Задача 4. Сколько необходимо накопить горячей воды для того, чтобы помыться 30 минут в душе?

Рассчитаем для примера с электрическим водонагревателем. Так как электрический тэн имеет постоянную отдачу тепловой энергии. Мощность тэнов 3 кВт.

Дано:

Холодная вода 10 градусов

Минимальная температура из крана 45 градусов

Максимальная температура нагрева воды в баке 80 градусов

Комфортный расход вытекающей воды из крана 0,25 л/сек.

Решение

Сначала найдем мощность, которая обеспечит данный расход воды

Ответ: 0,45 м3 = 450 литров воды понадобится для того, чтобы помыться накопленной горячей водой. При условии, что тэны не нагревают воду в момент потребления горячей воды.

Многим может показаться, что нет учета входа холодной воды в бак. Как рассчитать потерю тепловой энергии, когда в воду 80 градусов попадает температура воды 10 градусов. Явно будет идти потеря тепловой энергии.

Это доказывается следующим образом:

Энергия, затраченная на нагрев бака с 10 до 80:

То есть в баке объемом 450 литров с температурой 80 градусов уже содержится 36 кВт тепловой энергии.

Из этого бака мы забираем энергию: 450 литров воды с температурой 45 градусов (через кран). Тепловая энергия воды объемом 450 литров с температурой 45 градусов = 18 кВт.

Эта доказывается законом сохранения энергии. Изначально в баке было 36 кВт энергии, забрали 18 кВт осталось 18 кВт. Эти 18 кВт энергии содержат воду с температурой 45 градусов. То есть 70 градусов поделили пополам получили 35 градусов. 35 градусов + 10 градусов холодной воды получаем температуру 45 градусов.

Тут главное понять, что такое закон сохранения энергии. Эта энергия из бака не может убежать не понятно куда! Мы знаем, что через кран вышло 18 кВт, а в баке изначально был 36 кВт. Забрав у бака 18 кВт мы понизим температуру в баке до 45 градусов (до средней температуры (80+10)/2=45).

Давайте теперь попробуем найти объем бака при нагреве бойлера до 90 градусов.

Использованная энергия потребления горячей воды на выходе из крана 18317 Вт

Ответ: Объем бака 350 литров. Повышение всего на 10 градусов уменьшило объем бака на 100 литров.

Многим может показаться это не реально. Это можно объяснить следующим образом: 100/450 = 0,22 это не так уж и много. Разница сохраненной температуры (80-45)

Докажем, что это справедливая формула другим способом:

Конечно это грубый теоретический расчет! В теоретическом расчете мы учитываем то, что температура в баке между верхним и нижним слоем мгновенно перемешивается. Если учитывать факт того, что вверху вода горячее, а внизу холоднее, то объем бака можно уменьшить на разницу температур. Не зря вертикальные баки считаются более эффективными по сохранению тепловой энергии. Так как чем больше высота бака, тем выше разница температур между верхним и нижним слоем. При быстром расходовании горячей воды, эта разница температур выше. Когда расхода воды нет, очень медленно температура в баке становится равномерной.

Мы просто 45 градусов спустим на 10 градусов ниже. За место 45 будет 35 градусов.

Ответ: За счет смещения температур мы уменьшили объем бака еще на 0,35-0,286=64 литра.

Мы рассчитали при условии, что в момент потребления горячей воды тэны не работали и не нагревали воду.

Давайте теперь посчитаем при условии , что бак начинает нагревать воду в момент потребления горячей воды.

Добавим еще мощности 3 кВт.

За 30 минут работы мы получим половину мощности 1,5 кВт.

Тогда нужно вычесть эту мощность.

Ответ: Объем бака составит 410 литров.

Задача 5. Расчет дополнительной мощности на ГВС

Рассмотрим частный дом площадью 200 м2. Максимальное потребление мощности на обогрев дома 15 кВт.

Проживают в доме 4 человека.

Найти: Дополнительную мощность для ГВС

То есть нам необходимо найти мощность котла с учетом: Мощности обогрева дома + нагрев горячей воды.

Для этой цели лучше использовать схему № 4:

Решение

Необходимо найти, сколько литров горячей воды потребляет человек в сутки:

В СНиП 2.04.01-85* указано, что по статистике на одного человека уходит 300 литров в сутки. Из них 120 литров на горячую воду с температурой 60 градусов. Это городская статистика перемешена с людьми, которые не привыкли тратить столько воды в сутки. Могу предложить свою статистику потребления: Если Вы любите принимать горячие ванны каждый день – Вы можете расходовать 300-500 литров горячей воды в сутки только на одного человека.

Объем воды в сутки на 4 человека:

То есть к мощности обогрева дома 15 кВт необходимо прибавить 930 Вт.=15930 Вт.

Но если учитывать факт того, что ночью (с 23:00 – 7:00) вы не потребляете горячую воду, то получится 16 часов, когда Вы потребляете горячую воду:

Ответ: Мощность котла = 15 кВт + 1,4 кВт на ГВС. = 16,4 кВт.

Но в таком расчете есть риск, того, что в момент большого потребления горячей воды в определенные часы вы надолго остановите обогрев дома.

Если хотите иметь хороший расход горячей воды для частного дома, то выбираем БКН не менее 30 кВт. Это позволит Вам иметь неограниченный расход 0,22 л/сек. с температурой минимум 45 градусов. Мощность котла при этом не должна быть меньше 30 кВт.

А вообще в задачах этой статьи был уклон на сохранение энергии. Мы не рассматривали, что происходит в конкретный момент, а пошли для расчета другим путем. Мы пошли по бесспорному методу сохранения энергии. Затраченная энергия на выходе из крана потом будет равна энергии приходящей от котлового оборудования. Зная мощности в двух разных местах можно найти затраченное время.

Однажды обсуждали расчет ГВС на форуме: http://santeh-baza.ru/viewtopic.php?f=7&t=78

Если Вы желаете получать уведомления
о новых полезных статьях из раздела:
Сантехника, водоснабжение, отопление,
то оставте Ваше Имя и Email.


Комментарии (+) [ Читать / Добавить ]

Серия видеоуроков по частному дому
Часть 1. Где бурить скважину?
Часть 2. Обустройство скважины на воду
Часть 3. Прокладка трубопровода от скважины до дома
Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения
Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
Расчет самовсасывающего насоса
Расчет диаметров от центрального водоснабжения
Насосная станция водоснабжения
Как выбрать насос для скважины?
Настройка реле давления
Реле давления электрическая схема
Принцип работы гидроаккумулятора
Уклон канализации на 1 метр СНИП
Схемы отопления
Гидравлический расчет двухтрубной системы отопления
Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
Гидравлический расчет однотрубной системы отопления
Гидравлический расчет лучевой разводки системы отопления
Схема с тепловым насосом и твердотопливным котлом – логика работы
Трехходовой клапан от valtec + термоголовка с выносным датчиком
Почему плохо греет радиатор отопления в многоквартирном доме
Как подключить бойлер к котлу? Варианты и схемы подключения
Рециркуляция ГВС. Принцип работы и расчет
Вы не правильно делаете расчет гидрострелки и коллекторов
Ручной гидравлический расчет отопления
Расчет теплого водяного пола и смесительных узлов
Трехходовой клапан с сервоприводом для ГВС
Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
Конструктор водоснабжения и отопления
Уравнение Бернулли
Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны
Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления
Секция радиатора

Введение

1. Определение тепловых нагрузок микрорайона на отопление, вентиляцию, ГВС

2. Выбор схемы включения подогревателя ГСВ к тепловой сети и температурного графика ЦКР

Тепловой гидравлический расчет кожухотрубного подогревателя

Расчет двухступенчатой последовательной схемы присоединения водоподогревателей ГВС

Тепловой и гидравлический расчет пластинчатых водоподогревателей ГВС

Список использованных источников


ВВЕДЕНИЕ


В данной работе рассчитаны тепловые нагрузки микрорайона на отопление и ГСВ, выбрана схема включения подогревателей ГСВ, выполнен тепловой и гидравлический расчет двух вариантов теплообменников. Рассматриваться будут только жилые здания однотипные, 5-10 этажные. Система теплоносителя закрытая, 4-х трубная с установкой подогревателя ГСВ в ЦТП. Все расчеты ведутся по укрупненным показателям. Принимаем жилые здания без вентиляции.

Расчетно-графическая работа выполняется в соответствии с действующими стандартными нормами и правилами, тех. условиями и основными положениями по проектированию, монтажу и эксплуатации систем теплоснабжения жилых зданий.


1. Определение тепловых нагрузок микрорайона на отопление, вентиляцию, ГВС.


Максимальный тепловой поток на отопление жилых зданий микрорайона:



где - укрупненный показатель максимального теплового потока для м²;

А - общая площадь жилого здания, м²;

Коэффициент учит-ий тепловой поток на отопление жилых зданий (доля жилых зданий)

80 Вт/м² Астрахань

А= 16400 м² - по заданию

0, т.к. рассматриваются только жилые здания.

Максимальный тепловой поток на горячее водоснабжение



где - коэффициент часовой неравномерности расхода числа на ГСВ

Укрупненный показатель среднего теплового потока на горячее водоснабжение, равный 376 Вт/мл;

U - число жителей в микрорайоне, по заданию, равно 560 чел;

376 Вт/мл;

Тепловые нагрузки на вентиляцию для жилого здания равны нулю.


2. Выбор схемы включения подогревателя ГСВ к тепловой сети и температурного графика ЦКР


Выбор схемы подключения подогревателя



где - из формулы (2)

Из формулы (1)

При принимают двухступенчатую схему, при принимают одноступенчатую параллельную схему

Вывод: подогреватель один, следовательно один общий подогреватель размещенный в ЦТП подключен по 2-х ступенчатой схеме.

Согласно заданию ЦКР отпуска тепла проводится по отопительному бытовому графику 130/700С, поэтому параметры точки излома, которые являются расчетными известны и составляют;

Максимальный расход на - средний тепловой поток на горячее водоснабжение (ГВС)



где - максимальный тепловой поток на ГВС из формулы (2)

Коэффициент часовой неравномерности расхода числа на ГСВ


3. Тепловой гидравлический расчет кожухотрубного подогревателя


Температура наружного воздуха в "точке излома"



где - температура воздуха внутри помещения,

Расчетная температура воздуха для проектирования отопления,

температура воды в падающем трубопроводе в "точке излом",

Температура воды приблизительно в обратном трубопроводе в "точке излома", при расчетной температуре теплоносителя в падающем трубопроводе 1300С.

Расчетный перепад температуры воды в тепловой сети, определяемый по формуле



где - расчетная температура сетевой воды в подающем трубопроводе,

Расчетная температура сетевой воды в обратном трубопроводе,


4. Расчет двухступенчатой последовательной схемы присоединения водоподогревателей ГВС

отопление вентиляция подогреватель кожухотрубный

Выбрать и рассчитать водоподогревательную установку для ГВС ЦТП, оборудованного водоподогревателем, состоящим из секций кожухотрубного типа с трубной системой из прямых гладких труб с блоком опорных перегородок по ГОСТ 27590. Система отопления микрорайона присоединена к магистральной тепловой сети по зависимой схеме. В ЦТП имеются баки - аккумуляторы.

Исходные данные:

Температура теплоносителя (греющей воды) в соответствии с рассчитанным повышенным графиком принята:

При расчетной температуре наружного воздуха для проектирования отопления;

в подающем трубопроводе ? 1 = 130 0С, в обратном - ? 2 = 700С;

в точке излома графика температур t ` n = -2,02 0С;

в подающем трубопроводе ? 1 n = 70 0С, в обратном ? 2 n = 44,9 0С.

Температура холодной водопроводной воды t c =5 0 С .

Температура горячей воды, поступающей в СГВ, t h =60 0 С .

Максимальный тепловой поток на отопление зданий Q o max = 1312000 Вт.

Расчетная тепловая производительность водоподогревателей Qsph=Qhm=QhT=210560 Вт.

6 Потери тепла трубопроводами Qht=0.

Плотность воды принять ?= 1000 кг/м3.

Максимальный расчетный секундный расход воды на ГВС q h = 2,5 л/с.

Порядок расчета:

Максимальный расчет воды на отопление:



Температура нагреваемой воды за водоподогревателем 1 ступени:



Расход греющей сетевой воды на ГВС:



4 Расход нагреваемой воды на ГВС:



Тепловой поток на II ступень водоподогревателя СГВ:



Тепловой поток на отопление в точке излома графика температур сетевой воды при температуре наружного воздуха t`n:



Расход греющей воды через I ступень водоподогревателя:



Расчетная тепловая производительность I ступени водоподогревателя:



Расчетная тепловая производительность II ступени водоподогревателя:



Температура греющей сетевой воды на выходе из водоподогревателя II ступени:



Температура греющей сетевой воды на выходе из водоподогревателя I ступени при условии равенства:


12 Среднелогарифмическая разность температур между греющей и нагреваемой водой для 1 ступени:



То же для II ступени:



Необходимое сечение трубок водоподогревателя при скорости воды в трубках и при однопоточном включении:



Из таблицы прил. 3 по полученной величине подбираем тип секции водоподогревателя со следующими характеристиками: , .

Скорость воды в трубках:



Скорость сетевой воды в межтрубном пространстве:



Расчет 1 ступени водоподогревателя ГВС:






д) коэффициент теплопередачи при:



е) требуемая поверхность нагрева 1 ступени:



ж) число секций водоподогревателя 1 ступени:



Принимаем 2 секции; действительная поверхность нагрева F1тр=0,65*2=1,3 м2.

Расчет II ступени водоподогревателя СГВ:

а) средняя температура греющей воды:



б) средняя температура нагреваемой воды:



в) коэффициент теплоотдачи от греющей воды к стенкам трубок:



г) коэффициент теплоотдачи от стенок трубок к нагреваемой воде:



д) коэффициент теплопередачи при



е) требуемая поверхность нагрева II ступени:



ж) число секций водоподогревателя II ступени:



Принимаем 6 секций.

В результате расчета получилось 2 секции в подогревателе I ступени и 6 секции в подогревателе II ступени суммарной поверхностью нагрева 5,55 м2.

Потери давления в водоподогревателях (6 последовательных секций длиной 2 м) для воды, проходящей в трубках с учетом?=2:



I ступень: ПВ 76*2-1,0-РГ-2-УЗ ГОСТ 27590-88

II ступень: ПВ 76*2-1,0-РГ-6-УЗ ГОСТ 27590-88


5. Тепловой и гидравлический расчет пластинчатых водоподогревателей ГВС


Выбрать и рассчитать водоподогревательную установку пластинчатого теплообменника, собранного из пластин 0,3p для СГВ того же ЦТП, что в примере с кожухотрубными секционными подогревателями. Следовательно, исходные данные, величины расходов и температуры теплоносителей на входе и на выходе из каждой ступени водоподогревателя принимаются такими же, как в прил. 3.

Проверяем соотношение ходов в теплообменнике I ступени, принимая предварительно потери давления по нагреваемой воде?Рн=100 кПа, по греющей воде?Ргр=40 кПа.



Соотношение ходов не превышает 2 , но расход греющей воды много больше расхода нагреваемой воды, следовательно, принимается несимметричная компоновка теплообменника.

По оптимальной скорости воды и живому сечению одного межпластинчатого канала определяем требуемое число каналов по нагреваемой воде и греющей воде:



Общее живое сечение каналов в пакете по ходу нагреваемой и греющей воды (принимаем равным 2, =15):



Фактические скорости греющей и нагреваемой воды:



Расчет водоподогревателя 1 ступени:

а) из табл.1 прил.4 ; получаем коэффициент теплоотдачи от греющей воды к стенке пластины:



б) коэффициент тепловосприятия от стенки пластины к нагреваемой воде:




г) требуемая поверхность нагрева водоподогревателя 1 ступени:



д) по табл.1 прил.4 поверхность нагрева одной пластины, количество ходов по греющей и нагреваемой воде в теплообменнике:



е) действительная поверхность нагрева водоподогревателя I ступени:



ж) потери давления I ступени по греющей и нагреваемой воде:



Расчет водоподогревателя II ступени:

а) коэффициент теплоотдачи от греющей воды к стенке пластины:



б) коэффициент тепловосприятия от пластины к нагреваемой воде:



в) , коэффициент теплопередачи:



г) требуемая поверхность нагрева водоподогревателя II ступени:



д) количество ходов по греющей и нагреваемой воде в теплообменнике:



Принимаем по греющей воде, по нагреваемой воде.

е) действительная поверхность нагрева водоподогревателя II ступени:



ж) потери давления II ступени по греющей и нагреваемой воде:




В результате расчета в качестве подогревателя ГВС принимаем два теплообменника (I и II ступени) разборной конструкции (р) с пластинами типа 0,3р, толщиной 1 мм, из стали 12×18Н10Т (исполнение 01), на консольной раме (исполнение 1к), с уплотнительными прокладками из резины марки 51-1481 (условное обозначение 12). Поверхность нагрева I ступени 8,7 м2, II ступени 8,7 м2. Технические характеристики пластинчатых теплообменников приведены в табл.1-3 прил. 4.

Условное обозначение теплообменников:

Ступени: Р 0,3р-1-8,7-1к-0,1-12 СХ1=

II Ступени: Р 0,3р-1-8,7-1к-0,1-12 СХ2=


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1. СНиП 2.04.01-85. Внутренний водопровод и канализация зданий.

Липовка Ю.Л., Целищев А. В., Мисютина И.В. Горячее водоснабжение: метод. указания к курсовой работе. Красноярск: СФУ, 2011. 36с.

ГОСТ 27590-88. Подогреватели водоводяные систем теплоснабжения. Общие технические условия.

СНиП 2.04.07-89*. Тепловые сети.

5. СНиП 23-01-99. Строительная климатология.

6. СТО 4.2 - 07 - 2012 Система менеджмента качества. Общие требования к построению, изложению и оформлению документов учебной деятельности. Взамен СТО 4.2 - 07 - 2010; дата введ. 27.02.2012. Красноярск: ИПК СФУ. 2012. 57 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Избранное для мирян Желание и намерение Избранное для мирян Желание и намерение Маринованный перец болгарский на зиму: рецепты без стерилизации Маринованный перец болгарский на зиму: рецепты без стерилизации Образ жизни людей в японии Образ жизни людей в японии